Inverting brain grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture measurements

Maëliss Jallais1, Pedro L. C. Rodrigues1, Alexandre Gramfort1, Demian Wassermann1
1: Inria
IPMI 2021 special issue
Publication date: 2022/05/08
PDF · arXiv · Video

Abstract

Effective characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in diffusion MRI (dMRI). Solving the problem of relating the dMRI signal with cytoarchitectural characteristics calls for the definition of a mathematical model that describes brain tissue via a handful of physiologically-relevant parameters and an algorithm for inverting the model. To address this issue, we propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells. We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model. As opposed to other approaches from the literature, our algorithm yields not only an estimation of the parameter vector θ that best describes a given observed data point x0 , but also a full posterior distribution p(θ|x0) over the parameter space. This enables a richer description of the model inversion, providing indicators such as credible intervals for the estimated parameters and a complete characterization of the parameter regions where the model may present indeterminacies. We approximate the posterior distribution using deep neural density estimators, known as normalizing flows, and fit them using a set of repeated simulations from the forward model. We validate our approach on simulations using dmipy and then apply the whole pipeline on two publicly available datasets.

Keywords

bayesian inference · diffusion mri · cytoarchitecture · inverse problems

Bibtex @article{melba:2022:010:jallais, title = "Inverting brain grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture measurements", author = "Jallais, Maëliss and Rodrigues, Pedro L. C. and Gramfort, Alexandre and Wassermann, Demian", journal = "Machine Learning for Biomedical Imaging", volume = "1", issue = "IPMI 2021 special issue", year = "2022", pages = "1--28", issn = "2766-905X", url = "https://melba-journal.org/2022:010" }
RISTY - JOUR AU - Jallais, Maëliss AU - Rodrigues, Pedro L. C. AU - Gramfort, Alexandre AU - Wassermann, Demian PY - 2022 TI - Inverting brain grey matter models with likelihood-free inference: a tool for trustable cytoarchitecture measurements T2 - Machine Learning for Biomedical Imaging VL - 1 IS - IPMI 2021 special issue SP - 1 EP - 28 SN - 2766-905X UR - https://melba-journal.org/2022:010 ER -

2022:010 cover


1 Introduction

Obtaining quantitative measurements of brain grey matter microstructure with a dedicated soma representation is a growing field of interest in the diffusion MRI (dMRI) community (Palombo et al., 2020; Jelescu et al., 2021). Unlike histology, dMRI permits to quantify brain tissue characteristics non-invasively and could, for example, help understanding dementia and cognitive deficits (Douaud et al., 2013). However, current methods require demanding acquisitions with several q𝑞qitalic_q-shells (equivalently b𝑏bitalic_b-shells) and rely on non-linear models for which several parameter values may yield the same observation, also known as parameter indeterminacy (Jelescu et al., 2016; Novikov et al., 2018b). This leads to numerically unstable solutions which are hard to interpret. Another major challenge is the fact that quantifying brain tissue microstructure directly from the dMRI signal is an inherently difficult task, because of the large dimensionality of the collected data and its stochastic nature (Fick et al., 2016).

Many works have tackled the non-linear inverse problem of inferring brain tissue parameters from dMRI signal. A popular solution is NODDI (Zhang et al., 2012), which stabilises the solution by imposing constraints on model parameters that are not biologically plausible (Novikov et al., 2018b). This has the effect of biasing the parameter estimation and the inverse problem remains largely degenerate (Jelescu et al., 2016). There has also been some interest in applying methods from the machine learning literature to solve the inverse problem. This is the case of the SANDI model (Palombo et al., 2020), in which the authors employ random forest regressors. Although the method provides rather acceptable accuracy in real-case scenarios, it can only output one set of tissue parameters for a given observed dMRI signal, masking, therefore, other biologically plausible solutions that could generate the same observed signal. Furthermore, the parameter estimates are obtained following a deterministic approach, so no description in terms of confidence interval are available. Also, the code for SANDI is not standard in the literature nor available in the internet yet.

To overcome such limitations, we present three contributions. First, we use a three-compartment model for brain tissue composed of neurites, somas, and extra-cellular space, and introduce a new parameter that jointly encodes soma radius and intracellular diffusivity without imposing constraints on these values. This new parameter reduces indeterminacies in the model and has relevant physiological interpretations. Second, we present a method to fit the model through summary features of the dMRI signal based on a large and small q𝑞qitalic_q-value analysis using boundary approximations. These rotationally-invariant features relate directly to the tissue parameters and enable us to invert the model without manipulating the raw dMRI signals. Such summary statistics ensure a stable solution of the parameter estimations, as opposed to the indeterminate models used in Zhang et al. (2012); Palombo et al. (2020). Third, we employ modern tools from Bayesian analysis known as likelihood-free inference (LFI,  (Cranmer et al., 2020)) to solve our non-linear inverse problem under a probabilistic framework and determine the posterior distribution of the fitted parameters. Such approach offers a full description of the solution landscape and can point out degeneracies, as opposed to the usual deterministic least-squares based solution (Jelescu et al., 2016; Novikov et al., 2018b).

2 Related Works

Current brain tissue models are predominantly based on the two compartment Standard Model (SM) (Zhang et al., 2012; Novikov et al., 2018a). Recent evidence shows that the SM, mainly used in white matter, does not hold for grey matter microstructure analysis (Veraart et al., 2020). Several assumptions aim at explaining this issue such as increased permeability in neurite membranes (Veraart et al., 2020), or curvy projections along with longer pulse duration (Novikov et al., 2018a). We follow the hypothesis that the SM doesn’t hold due to an abundance of cell bodies in grey matter (Palombo et al., 2020). Our proposed biophysical model is then based on three compartments (Palombo et al., 2020): neurites, somas, and extra-cellular space (ECS). Despite its increased complexity, the main advantage of such model is the possibility to jointly estimate the characteristic features of each compartment.

Inferring parameters of the brain tissue model directly from dMRI signals has proven to be a very challenging task and has motivated the development of new approaches to reduce the dimensionality of the data to be processed. For instance, Novikov et al. (2018b) proposes the LEMONADE system of equations, based on a Taylor expansion of the diffusion signal and a set of rotationally invariant moments. In this work, we extend the LEMONADE equations to a setting with a three compartment model and further develop the method so to extract more features from the observed signal. We call the resulting vector of features defined by these quantities the ‘summary statistics’ of the dMRI signal.

The usual way of applying a Bayesian approach to solve non-linear inverse problems (Stuart, 2010) is to define two quantities: a prior distribution encoding initial knowledge of the parameter values (e.g. intervals which are physiologically relevant) and the likelihood function of the forward model being studied. One can then either obtain an analytic expression of the posterior distribution via Bayes’ formula or use a Markov-Chain Monte Carlo (MCMC) procedure to numerically sample the posterior distribution (Gelman et al., 2013). However, the likelihood function of complex models such as the one that we consider here is often very hard to obtain and makes the Bayesian approach rather challenging to use. Likelihood-free inference (LFI) bypasses this bottleneck by recurring to several simulations of the forward model using different parameters and learning an approximation to the posterior distribution from these examples (Cranmer et al., 2020).

The first contributions on LFI are also known as approximate Bayesian computation (ABC) and have been applied to invert models from ecology, population genetics, and epidemiology (Sisson, 2018). Some of the limitations of these techniques include the large number of simulations required for the posterior estimations and the need of defining a distance function to compare the results of two simulations. Recently, there has been a growing interest in the machine learning community in improving the limitations of ABC methods through deep generative modeling, i.e. neural network architectures specially tailored to approximate probability density functions from a set of examples (Goodfellow et al., 2016). Normalizing flows (Papamakarios et al., 2019) are a particular class of such neural networks that have demonstrated promising results for likelihood-free inference in different research fields (Cranmer et al., 2020; Gonçalves et al., 2020; Greenberg et al., 2019).

3 Theory

In this section, we present the theoretical background underlying our three main contributions. Section 3.1 describes the three-compartment model for brain grey matter. We also introduce a new parameter that captures both soma radius and intracellular diffusivity and avoids the usual indeterminacy in estimating them separately. Section 3.2 presents the summary statistics used to reduce the dimensionality of the dMRI signal into a 7-dimensional feature vector that can be used to determine the physiological parameters of interest. Section 3.3 describes the Bayesian approach used to solve our non-linear inverse problem and obtain a posterior distribution for the physiological parameters that best describe a given dMRI signal.

3.1 Modeling the Brain grey Matter with a 3-compartment Model

To characterize cortical cytoarchitecture, we propose a method that relates the diffusion MRI signal to specific tissue parameters. To that aim, we first define a forward model based on a biophysical modeling of brain grey matter.

Research in histology has demonstrated that grey matter is composed of neurons embedded in a fluid environment. Each neuron is composed of a soma, corresponding to the cellular body, surrounded by neurites connecting neurons together. Following this tissue biophysical composition, we model the grey matter tissue as three-compartmental (Palombo et al., 2020), moving away from the usual standard model (SM) designed for white matter. We further assume that our acquisition protocol is insensitive to exchanges between the compartments, i.e. molecules moving from one compartment to another have a negligible influence on the signal (Palombo et al., 2020). Many works include also a dot compartment into the SM with zero apparent diffusivity and no exchange. However, we have not considered such assumption, because its presence has been considered very unlikely in grey matter by previous works (Veraart et al., 2019; Tax et al., 2020). The observed diffusion signal is considered as a convex mixture of signals arising from somas, neurites, and extra-cellular space (ECS). Unlike white matter-centric methods (Jelescu and Budde, 2017), we are not interested in the fiber orientation and only estimate orientation-independent parameters. This enables us to work on the direction-averaged dMRI signal, denoted S¯(q)¯𝑆𝑞\bar{S}(q)over¯ start_ARG italic_S end_ARG ( italic_q ), known as the powder averaged signal. This consideration mainly matters for neurites, as their signal is not isotropic, as opposed to the proposed model for somas and ECS. Our direction-averaged grey matter signal model is then:

S¯(q)S(0)=fnS¯neurites(q,Dn)+fsS¯somas(q,Ds,rs)+fECSS¯ECS(q,De).¯𝑆𝑞𝑆0subscript𝑓𝑛subscript¯𝑆neurites𝑞subscript𝐷𝑛subscript𝑓𝑠subscript¯𝑆somas𝑞subscript𝐷𝑠subscript𝑟𝑠subscript𝑓ECSsubscript¯𝑆ECS𝑞subscript𝐷𝑒\frac{\bar{S}(q)}{S(0)}={f_{n}}\bar{S}_{\mathrm{neurites}}({q},{D_{n}})+{f_{s}% }\bar{S}_{\mathrm{somas}}({q},{D_{s}},{r_{s}})+{f_{\mathrm{ECS}}}\bar{S}_{% \mathrm{ECS}}({q},D_{e})\leavevmode\nobreak\ .divide start_ARG over¯ start_ARG italic_S end_ARG ( italic_q ) end_ARG start_ARG italic_S ( 0 ) end_ARG = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT roman_neurites end_POSTSUBSCRIPT ( italic_q , italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT roman_somas end_POSTSUBSCRIPT ( italic_q , italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) + italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT ( italic_q , italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) .(1)

In this equation, fnsubscript𝑓𝑛f_{n}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, and fECSsubscript𝑓𝐸𝐶𝑆f_{ECS}italic_f start_POSTSUBSCRIPT italic_E italic_C italic_S end_POSTSUBSCRIPT represent signal fractions for neurites, somas, and ECS respectively (fn+fs+fECS=1subscript𝑓𝑛subscript𝑓𝑠subscript𝑓ECS1f_{n}+f_{s}+f_{\mathrm{ECS}}=1italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT = 1). Note that the relative signal fractions do not correspond to the relative volume fractions of the tissue compartments as they are also modulated by different T2 values (Novikov et al., 2018a). Dnsubscript𝐷𝑛D_{n}italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT corresponds to axial diffusivity inside neurites, while Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and Desubscript𝐷𝑒D_{e}italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT correspond to somas and extra-cellular diffusivities. rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is the average soma radius within a voxel. This model is the same as the model SANDI proposed by Palombo et al. (2020), with fn=ficfinsubscript𝑓𝑛subscript𝑓𝑖𝑐subscript𝑓𝑖𝑛f_{n}=f_{ic}f_{in}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_i italic_c end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_i italic_n end_POSTSUBSCRIPT, fs=ficfissubscript𝑓𝑠subscript𝑓𝑖𝑐subscript𝑓𝑖𝑠f_{s}=f_{ic}f_{is}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_i italic_c end_POSTSUBSCRIPT italic_f start_POSTSUBSCRIPT italic_i italic_s end_POSTSUBSCRIPT and fECS=fecsubscript𝑓ECSsubscript𝑓𝑒𝑐f_{\mathrm{ECS}}=f_{ec}italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT = italic_f start_POSTSUBSCRIPT italic_e italic_c end_POSTSUBSCRIPT. We use q𝑞qitalic_q-values for more readability and harmonization throughout the paper, but a direct conversion to b𝑏bitalic_b-values is also possible, using b=(2πq)2τ𝑏superscript2𝜋𝑞2𝜏b=(2\pi q)^{2}\tauitalic_b = ( 2 italic_π italic_q ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_τ with τ=Δδ/3𝜏Δ𝛿3\tau=\Delta-\delta/3italic_τ = roman_Δ - italic_δ / 3.

We now review the model for each compartment, to make explicit the impact of each parameter on the diffusion MRI signal. Note that the use of such a model supposes each voxel contains a single type of neuron.

3.1.1 Neurite compartment.

Neurites, as in the SM, are modeled as 0-radius impermeable cylinders (“sticks”), with effective diffusion along the parallel axis, and a negligible radial intra-neurite diffusivity. In our acquisition setting, this model has been shown to hold (Veraart et al., 2020). Its direction averaged signal is (Veraart et al., 2020):

S¯neurites(q)14πτDnq1.similar-to-or-equalssubscript¯𝑆neurites𝑞14𝜋𝜏subscript𝐷𝑛superscript𝑞1\bar{S}_{\mathrm{neurites}}(q)\simeq\frac{1}{4\sqrt{\pi\tau{D_{n}}}}\cdot q^{-% 1}\leavevmode\nobreak\ .over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT roman_neurites end_POSTSUBSCRIPT ( italic_q ) ≃ divide start_ARG 1 end_ARG start_ARG 4 square-root start_ARG italic_π italic_τ italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG end_ARG ⋅ italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT .(2)

3.1.2 Soma compartment.

Somas are modeled as spheres, whose signal can be computed using the Gaussian phase distribution approximation (Balinov et al., 1993):

logS¯somas(q)=C(rs,Ds)q2.subscript¯𝑆somas𝑞𝐶subscript𝑟𝑠subscript𝐷𝑠superscript𝑞2-\log\bar{S}_{\mathrm{somas}}(q)=C({r_{s}},{D_{s}})\cdot q^{2}\leavevmode% \nobreak\ .- roman_log over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT roman_somas end_POSTSUBSCRIPT ( italic_q ) = italic_C ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) ⋅ italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(3)

We exploit this relation here to extract a parameter Cs=C(rs,Ds)[m2]subscript𝐶𝑠𝐶subscript𝑟𝑠subscript𝐷𝑠delimited-[]superscript𝑚2C_{s}=C(r_{s},D_{s})[m^{2}]italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = italic_C ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) [ italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] which, at fixed diffusivity Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, is modulated by the radius of the soma rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT:

C(rs,Ds)=𝐶subscript𝑟𝑠subscript𝐷𝑠absent\displaystyle C({r_{s}},{D_{s}})=italic_C ( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) =2Dsδ2m=1αm4αm2rs222subscript𝐷𝑠superscript𝛿2superscriptsubscript𝑚1superscriptsubscript𝛼𝑚4superscriptsubscript𝛼𝑚2superscriptsubscript𝑟𝑠22\displaystyle\frac{2}{{D_{s}}\delta^{2}}\sum_{m=1}^{\infty}\frac{\alpha_{m}^{-% 4}}{\alpha_{m}^{2}{r_{s}}^{2}-2}divide start_ARG 2 end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_δ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ∑ start_POSTSUBSCRIPT italic_m = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT divide start_ARG italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT end_ARG start_ARG italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 end_ARG
(2δ2+eαm2Ds(Δδ)eαm2Dsδeαm2DsΔ+eαm2Ds(Δ+δ)αm2Ds),absent2𝛿2superscript𝑒superscriptsubscript𝛼𝑚2subscript𝐷𝑠Δ𝛿superscript𝑒superscriptsubscript𝛼𝑚2subscript𝐷𝑠𝛿superscript𝑒superscriptsubscript𝛼𝑚2subscript𝐷𝑠Δsuperscript𝑒superscriptsubscript𝛼𝑚2subscript𝐷𝑠Δ𝛿superscriptsubscript𝛼𝑚2subscript𝐷𝑠\displaystyle\cdot\left(2\delta-\frac{2+e^{-\alpha_{m}^{2}{D_{s}}(\Delta-% \delta)}-e^{-\alpha_{m}^{2}{D_{s}}\delta}-e^{-\alpha_{m}^{2}{D_{s}}\Delta}+e^{% -\alpha_{m}^{2}{D_{s}}(\Delta+\delta)}}{\alpha_{m}^{2}{D_{s}}}\right)% \leavevmode\nobreak\ ,⋅ ( 2 italic_δ - divide start_ARG 2 + italic_e start_POSTSUPERSCRIPT - italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( roman_Δ - italic_δ ) end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_δ end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_Δ end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT - italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( roman_Δ + italic_δ ) end_POSTSUPERSCRIPT end_ARG start_ARG italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) ,

where αmsubscript𝛼𝑚\alpha_{m}italic_α start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT is the m𝑚mitalic_mth root of (αrs)1J32(αrs)=J52(αrs)superscript𝛼subscript𝑟𝑠1subscript𝐽32𝛼subscript𝑟𝑠subscript𝐽52𝛼subscript𝑟𝑠(\alpha r_{s})^{-1}J_{\frac{3}{2}}(\alpha r_{s})=J_{\frac{5}{2}}(\alpha r_{s})( italic_α italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_J start_POSTSUBSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT ( italic_α italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) = italic_J start_POSTSUBSCRIPT divide start_ARG 5 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT ( italic_α italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ), with Jn(x)subscript𝐽𝑛𝑥J_{n}(x)italic_J start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_x ) the Bessel functions of the first kind. In certain specific cases, Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT has a simpler and more interpretable expression. For instance, when we consider a narrow pulse regime, with small τ𝜏\tauitalic_τ or large rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT loses its dependence on rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (Balinov et al., 1993) and we obtain:

Cs=Dsτ.subscript𝐶𝑠subscript𝐷𝑠𝜏C_{s}=D_{s}\tau\leavevmode\nobreak\ .italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_τ .(4)

In the Neuman (wide pulse) regime, i.e. when DsΔrs2much-greater-thansubscript𝐷𝑠Δsuperscriptsubscript𝑟𝑠2D_{s}\Delta\gg r_{s}^{2}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT roman_Δ ≫ italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and Dsδ1much-less-thansubscript𝐷𝑠𝛿1D_{s}\delta\ll 1italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_δ ≪ 1, Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT becomes only dependent on the soma radius (Murday and Cotts, 1968):

Cs=15rs2.subscript𝐶𝑠15superscriptsubscript𝑟𝑠2C_{s}=\frac{1}{5}r_{s}^{2}\leavevmode\nobreak\ .italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 5 end_ARG italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(5)

These two approximations permits us to better interpret the parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT.

3.1.3 Extra-cellular space compartment.

We approximate the extra-cellular space with isotropic Gaussian diffusion, i.e. a mono-exponential diffusion signal with a scalar diffusion constant Desubscript𝐷𝑒D_{e}italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT, which reflects the molecular viscosity of the fluid. This approximation assumes that the ECS is fully connected. The approximation is therefore:

log(S¯ECS(q))=(2πq)2τDe.subscript¯𝑆ECS𝑞superscript2𝜋𝑞2𝜏subscript𝐷𝑒-\log(\bar{S}_{\mathrm{ECS}}(q))=(2\pi q)^{2}\tau D_{e}\leavevmode\nobreak\ .- roman_log ( over¯ start_ARG italic_S end_ARG start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT ( italic_q ) ) = ( 2 italic_π italic_q ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT .(6)

Because of the geometry of the problem, we estimate Desubscript𝐷𝑒D_{e}italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT as equal to one third of the diffusivity in the ventricles (considered as free diffusivity), given the same metabolic composition of the extracellular fluid and ventricles (Vincent et al., 2021).

3.2 An Invertible 3-compartment Model: dMRI Summary Statistics

The tissue model presented in Section 3.1 enables us to relate the dMRI signal with parameters representing grey matter tissue microstructure. However, solving the inverse problem directly from Eq. (1) is a difficult task, leading to indeterminacies and poorly estimated parameters with large variability. Current methods addressing this issue have not studied its stability (Palombo et al., 2020) but simpler models with only two compartments have been shown to be indeterminate (Novikov et al., 2018a).

To produce a method which addresses this indeterminacy, we introduce rotationally invariant summary statistics to describe the dMRI signal. The goal is to reduce the dimensionality of the data at hand and representing all the relevant information for statistical inference with a few features. We then solve the inverse problem efficiently using Bayesian inference as described in Section 3.3. These dMRI-based summary statistics are extracted from our proposed model presented in Section 3.1 via the following analysis of the dMRI signal on the boundaries of large and small q𝑞qitalic_q-value cases.

3.2.1 Large q𝑞qitalic_q-value approximation: RTOP.

We compute a q𝑞qitalic_q-bounded return-to-the-origin probability (RTOP), which measures the restrictions of the diffusing fluid molecule motion and gives us information about the structure of the media (Mitra et al., 1995):

RTOP(q)=4π0qS¯(η)S(0)η2𝑑η.RTOP𝑞4𝜋superscriptsubscript0𝑞¯𝑆𝜂𝑆0superscript𝜂2differential-d𝜂\mathrm{RTOP}(q)=4\pi\int_{0}^{q}{\frac{\bar{S}(\eta)}{S(0)}}\eta^{2}d\eta% \leavevmode\nobreak\ .roman_RTOP ( italic_q ) = 4 italic_π ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT divide start_ARG over¯ start_ARG italic_S end_ARG ( italic_η ) end_ARG start_ARG italic_S ( 0 ) end_ARG italic_η start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d italic_η .(7)

For q𝑞qitalic_q large enough, the RTOP in our 3-compartment model in Eq. (1) yields a soma and extra-cellular signal which converges towards a constant value in q𝑞qitalic_q, while the neurites’ contribution becomes quadratic in q𝑞qitalic_q. In this case, RTOP becomes:

RTOP(q)=fs(πCs)3/2+fECS8(πτDe)3/2afit+fn2πτDnbfitq2+γq3,RTOP𝑞subscriptsubscript𝑓𝑠superscript𝜋subscript𝐶𝑠32subscript𝑓ECS8superscript𝜋𝜏subscript𝐷𝑒32subscript𝑎fitsubscriptsubscript𝑓𝑛2𝜋𝜏subscript𝐷𝑛subscript𝑏fitsuperscript𝑞2𝛾superscript𝑞3\mathrm{RTOP}(q)=\underbrace{{f_{s}}\left(\frac{\pi}{{C_{s}}}\right)^{3/2}+% \frac{{f_{\mathrm{ECS}}}}{8(\pi\tau D_{e})^{3/2}}}_{a_{\mathrm{fit}}}+% \underbrace{\frac{{f_{n}}}{2}\cdot\sqrt{\frac{\pi}{\tau{D_{n}}}}}_{b_{\mathrm{% fit}}}\cdot q^{2}+\gamma q^{3}\leavevmode\nobreak\ ,roman_RTOP ( italic_q ) = under⏟ start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( divide start_ARG italic_π end_ARG start_ARG italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT + divide start_ARG italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT end_ARG start_ARG 8 ( italic_π italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT end_POSTSUBSCRIPT + under⏟ start_ARG divide start_ARG italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ⋅ square-root start_ARG divide start_ARG italic_π end_ARG start_ARG italic_τ italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG end_ARG end_ARG start_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⋅ italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_γ italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ,(8)

in which the last term of the equation, γq3𝛾superscript𝑞3\gamma q^{3}italic_γ italic_q start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, is a nuisance parameter that describes a constant noise in the direction averaged signal. By accurately estimating the second derivative of RTOP(q)RTOP𝑞\mathrm{RTOP}(q)roman_RTOP ( italic_q ) at q𝑞qitalic_q large enough, we can solve the coefficients of interest of the polynomial in Eq. (8): afitsubscript𝑎fita_{\mathrm{fit}}italic_a start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT and bfitsubscript𝑏fitb_{\mathrm{fit}}italic_b start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT. We do this efficiently by casting it as an overdetermined ordinary least squares problem which has a unique solution.

3.2.2 Small q𝑞qitalic_q-value approximation: Spiked LEMONADE111Please note that the ‘spiked’ adjective used here is simply an allusion to our method being a variation of the LEMONADE method..

We propose a second approximation, based on a moment decomposition for small q𝑞qitalic_q-values (Novikov et al., 2018b):

S𝐠^(q)S(0)=1b(q)Mi1i2(2)g1g2+b(q)22!Mi1i4(4)g1g4,b(q)=(2πq)2τ,formulae-sequencesubscript𝑆^𝐠𝑞𝑆01𝑏𝑞subscriptsuperscript𝑀2subscript𝑖1subscript𝑖2subscript𝑔1subscript𝑔2𝑏superscript𝑞22subscriptsuperscript𝑀4subscript𝑖1subscript𝑖4subscript𝑔1subscript𝑔4𝑏𝑞superscript2𝜋𝑞2𝜏\frac{S_{\hat{\textbf{g}}}(q)}{S(0)}=1-b(q)M^{(2)}_{i_{1}i_{2}}g_{1}g_{2}+% \frac{b(q)^{2}}{2!}M^{(4)}_{i_{1}\ldots i_{4}}g_{1}\ldots g_{4}-\ldots,\quad b% (q)=(2\pi q)^{2}\tau\leavevmode\nobreak\ ,divide start_ARG italic_S start_POSTSUBSCRIPT over^ start_ARG g end_ARG end_POSTSUBSCRIPT ( italic_q ) end_ARG start_ARG italic_S ( 0 ) end_ARG = 1 - italic_b ( italic_q ) italic_M start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + divide start_ARG italic_b ( italic_q ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 ! end_ARG italic_M start_POSTSUPERSCRIPT ( 4 ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_g start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT - … , italic_b ( italic_q ) = ( 2 italic_π italic_q ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_τ ,(9)

where iksubscript𝑖𝑘i_{k}italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT are the directional basis of the tensors M𝑀Mitalic_M, gk=ik𝐠^3subscript𝑔𝑘subscript𝑖𝑘^𝐠superscript3g_{k}=i_{k}\cdot\hat{\textbf{g}}\in\mathbb{R}^{3}italic_g start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT = italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ⋅ over^ start_ARG g end_ARG ∈ blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT, and 𝐠^^𝐠\hat{\textbf{g}}over^ start_ARG g end_ARG the unit direction of the dMRI acquisition. From the moment tensors of this decomposition, LEMONADE (Novikov et al., 2018b) extracts rotational invariant scalar indices M(i),j,i,j{0,2,4,}.superscript𝑀𝑖𝑗𝑖𝑗024M^{(i),j},\,i,j\in\{0,2,4,\ldots\}.italic_M start_POSTSUPERSCRIPT ( italic_i ) , italic_j end_POSTSUPERSCRIPT , italic_i , italic_j ∈ { 0 , 2 , 4 , … } . These quantify white matter microstructure by plugging the 2-compartment SM into Eq. (9(see Novikov et al., 2018b, app. C).

In this work, we extended LEMONADE to our 3-compartment model presented in Section 3.1 by plugging Eq. (1) into Eq. (9) and performing tedious arithmetic. This results in the following equation system, which now includes the soma parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, relating the dMRI signal to grey matter microstructure:

{M(2),0=fnDn+3fsCs(2π)2τ+3fECSDeM(2),2=fnDnp2M(4),0=fnDn2+5fs(Cs(2π)2τ)2+5fECSDe2M(4),2=fnDn2p2casessuperscript𝑀20subscript𝑓𝑛subscript𝐷𝑛3subscript𝑓𝑠subscript𝐶𝑠superscript2𝜋2𝜏3subscript𝑓ECSsubscript𝐷𝑒𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒superscript𝑀22subscript𝑓𝑛subscript𝐷𝑛subscript𝑝2𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒superscript𝑀40subscript𝑓𝑛superscriptsubscript𝐷𝑛25subscript𝑓𝑠superscriptsubscript𝐶𝑠superscript2𝜋2𝜏25subscript𝑓ECSsuperscriptsubscript𝐷𝑒2𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒superscript𝑀42subscript𝑓𝑛superscriptsubscript𝐷𝑛2subscript𝑝2𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒\begin{cases}M^{(2),0}={f_{n}}{D_{n}}+3{f_{s}}\frac{{C_{s}}}{(2\pi)^{2}\tau}+3% {f_{\mathrm{ECS}}}D_{e}\\ M^{(2),2}={f_{n}}{D_{n}}{p_{2}}\\ M^{(4),0}={f_{n}}{D_{n}}^{2}+5{f_{s}}\left(\frac{{C_{s}}}{(2\pi)^{2}\tau}% \right)^{2}+5{f_{\mathrm{ECS}}}D_{e}^{2}\\ M^{(4),2}={f_{n}}{D_{n}}^{2}{p_{2}}\end{cases}{ start_ROW start_CELL italic_M start_POSTSUPERSCRIPT ( 2 ) , 0 end_POSTSUPERSCRIPT = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + 3 italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT divide start_ARG italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_τ end_ARG + 3 italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_M start_POSTSUPERSCRIPT ( 2 ) , 2 end_POSTSUPERSCRIPT = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_M start_POSTSUPERSCRIPT ( 4 ) , 0 end_POSTSUPERSCRIPT = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 5 italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ( divide start_ARG italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_τ end_ARG ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 5 italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_M start_POSTSUPERSCRIPT ( 4 ) , 2 end_POSTSUPERSCRIPT = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW(10)

where p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is a scalar measure of neurite orientation dispersion (Novikov et al., 2018b).

Note that only the shells with b(q)𝑏𝑞absentb(q)\leqitalic_b ( italic_q ) ≤ 2.5 ms µm2times2.5timesmillisecondmicrometer22.5\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 2.5 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG are used, to get an unbiased estimation of the rotational invariant moments M(2),0superscript𝑀20M^{(2),0}italic_M start_POSTSUPERSCRIPT ( 2 ) , 0 end_POSTSUPERSCRIPT, M(2),2superscript𝑀22{M^{(2),2}}italic_M start_POSTSUPERSCRIPT ( 2 ) , 2 end_POSTSUPERSCRIPT, M(4),0superscript𝑀40{M^{(4),0}}italic_M start_POSTSUPERSCRIPT ( 4 ) , 0 end_POSTSUPERSCRIPT and M(4),2superscript𝑀42{M^{(4),2}}italic_M start_POSTSUPERSCRIPT ( 4 ) , 2 end_POSTSUPERSCRIPT.

3.2.3 Complete system.

Combining equations (8) and (10) and adding the constraint that the fractions for the three compartments sum to one, we obtain a non-linear system of 7 equations and 7 unknowns. Following Menon et al. (2020), we assume Desubscript𝐷𝑒D_{e}italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT nearly-constant per subject acquisition and estimated it as one third of the mean diffusivity in the subject’s ventricles (Vincent et al., 2021). This assumption allows us to drop an unknown from the system, use Desubscript𝐷𝑒D_{e}italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT as a reference diffusivity and turn our system of equations unitless with Dnu=DnDesuperscriptsubscript𝐷𝑛𝑢subscript𝐷𝑛subscript𝐷𝑒{D_{n}^{u}}=\frac{{D_{n}}}{D_{e}}italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT = divide start_ARG italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG and Csu=Cs(2π)2τDesuperscriptsubscript𝐶𝑠𝑢subscript𝐶𝑠superscript2𝜋2𝜏subscript𝐷𝑒{C_{s}^{u}}=\frac{{C_{s}}}{(2\pi)^{2}\tau D_{e}}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT = divide start_ARG italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG ( 2 italic_π ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG, which gives:

Spiked LEMONADERTOP
Small q𝑞qitalic_q-valuesLarge q𝑞qitalic_q-values
{M(2),0De=fnDnu+3fsCsu+3fECSM(2),2De=fnDnup2M(4),0De2=fnDnu2+5fsCsu2+5fECSM(4),2De2=fnDnu2p2casessuperscript𝑀20subscript𝐷𝑒subscript𝑓𝑛superscriptsubscript𝐷𝑛𝑢3subscript𝑓𝑠superscriptsubscript𝐶𝑠𝑢3subscript𝑓ECS𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒superscript𝑀22subscript𝐷𝑒subscript𝑓𝑛superscriptsubscript𝐷𝑛𝑢subscript𝑝2𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒superscript𝑀40superscriptsubscript𝐷𝑒2subscript𝑓𝑛superscriptsuperscriptsubscript𝐷𝑛𝑢25subscript𝑓𝑠superscriptsuperscriptsubscript𝐶𝑠𝑢25subscript𝑓ECS𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒superscript𝑀42superscriptsubscript𝐷𝑒2subscript𝑓𝑛superscriptsuperscriptsubscript𝐷𝑛𝑢2subscript𝑝2𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒\begin{cases}\frac{M^{(2),0}}{D_{e}}={f_{n}}{D_{n}^{u}}+3{f_{s}}{C_{s}^{u}}+3{% f_{\mathrm{ECS}}}\\ \frac{M^{(2),2}}{D_{e}}={f_{n}}{D_{n}^{u}}\cdot{p_{2}}\\ \frac{M^{(4),0}}{D_{e}^{2}}={f_{n}}{D_{n}^{u}}^{2}+5{f_{s}}{C_{s}^{u}}^{2}+5{f% _{\mathrm{ECS}}}\\ \frac{M^{(4),2}}{D_{e}^{2}}={f_{n}}{D_{n}^{u}}^{2}\cdot{p_{2}}\\ \end{cases}{ start_ROW start_CELL divide start_ARG italic_M start_POSTSUPERSCRIPT ( 2 ) , 0 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT + 3 italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT + 3 italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_M start_POSTSUPERSCRIPT ( 2 ) , 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT ⋅ italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_M start_POSTSUPERSCRIPT ( 4 ) , 0 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 5 italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 5 italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_M start_POSTSUPERSCRIPT ( 4 ) , 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⋅ italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW{afit(τDe)3/2=fs8(πCsu)3/2+fECS8π3/2bfit(τDe)1/2=fn2πDnucasessubscript𝑎fitsuperscript𝜏subscript𝐷𝑒32absentsubscript𝑓𝑠8superscript𝜋superscriptsubscript𝐶𝑠𝑢32𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒subscript𝑓ECS8superscript𝜋32subscript𝑏fitsuperscript𝜏subscript𝐷𝑒12absentsubscript𝑓𝑛2𝜋superscriptsubscript𝐷𝑛𝑢\begin{cases}a_{\mathrm{fit}}\left(\tau D_{e}\right)^{3/2}=&\frac{{f_{s}}}{8(% \pi{C_{s}^{u}})^{3/2}}\\ &+\frac{{f_{\mathrm{ECS}}}}{8\pi^{3/2}}\\ b_{\mathrm{fit}}\left(\tau D_{e}\right)^{1/2}=&\frac{{f_{n}}}{2}\sqrt{\frac{% \pi}{{D_{n}^{u}}}}\end{cases}{ start_ROW start_CELL italic_a start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT ( italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT = end_CELL start_CELL divide start_ARG italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT end_ARG start_ARG 8 ( italic_π italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL + divide start_ARG italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT end_ARG start_ARG 8 italic_π start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT end_ARG end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT ( italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT = end_CELL start_CELL divide start_ARG italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG square-root start_ARG divide start_ARG italic_π end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT end_ARG end_ARG end_CELL end_ROW
fn+fs+fECS=1subscript𝑓𝑛subscript𝑓𝑠subscript𝑓ECS1{f_{n}}+{f_{s}}+{f_{\mathrm{ECS}}}=1italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT = 1

3.3 Inverting the model with Bayesian inference

Our main goal is to determine the values of the parameter vector

𝜽=(Dn,Cs,p2,fs,fn,fECS)6𝜽subscript𝐷𝑛subscript𝐶𝑠subscript𝑝2subscript𝑓𝑠subscript𝑓𝑛subscript𝑓ECSsuperscript6\boldsymbol{\theta}=(D_{n},C_{s},p_{2},f_{s},f_{n},f_{\mathrm{ECS}})\in\mathbb% {R}^{6}bold_italic_θ = ( italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT ) ∈ blackboard_R start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT

that best explain a given observed dMRI signal. Because of the high-dimensionality of this kind of signal and the difficulties in obtaining stable estimates of 𝜽𝜽\boldsymbol{\theta}bold_italic_θ directly from it, we recur to the set of summary features defined in Section 3.2,

𝒙=(M(2),0De,M(2),2De,M(4),0De2,M(4),2De2,afit(τDe)3/2,bfitτDe,1)7,𝒙superscript𝑀20subscript𝐷𝑒superscript𝑀22subscript𝐷𝑒superscript𝑀40superscriptsubscript𝐷𝑒2superscript𝑀42superscriptsubscript𝐷𝑒2subscript𝑎fitsuperscript𝜏subscript𝐷𝑒32subscript𝑏fit𝜏subscript𝐷𝑒1superscript7\boldsymbol{x}=\left(\tfrac{M^{(2),0}}{D_{e}},\tfrac{M^{(2),2}}{D_{e}},\tfrac{% M^{(4),0}}{D_{e}^{2}},\tfrac{M^{(4),2}}{D_{e}^{2}},a_{\mathrm{fit}}(\tau D_{e}% )^{3/2},b_{\mathrm{fit}}\sqrt{\tau D_{e}},1\right)\in\mathbb{R}^{7}\leavevmode% \nobreak\ ,bold_italic_x = ( divide start_ARG italic_M start_POSTSUPERSCRIPT ( 2 ) , 0 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_M start_POSTSUPERSCRIPT ( 2 ) , 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG , divide start_ARG italic_M start_POSTSUPERSCRIPT ( 4 ) , 0 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , divide start_ARG italic_M start_POSTSUPERSCRIPT ( 4 ) , 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , italic_a start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT ( italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 3 / 2 end_POSTSUPERSCRIPT , italic_b start_POSTSUBSCRIPT roman_fit end_POSTSUBSCRIPT square-root start_ARG italic_τ italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT end_ARG , 1 ) ∈ blackboard_R start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT ,

and make the assumption that it carries all the information necessary for determining the 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT having generated a given dMRI signal 𝑺0subscript𝑺0\boldsymbol{S}_{0}bold_italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. We denote the relation between these quantities as

𝒙=(𝜽)+𝒏,𝒙𝜽𝒏\boldsymbol{x}=\mathcal{M}(\boldsymbol{\theta})+\boldsymbol{n}\leavevmode% \nobreak\ ,bold_italic_x = caligraphic_M ( bold_italic_θ ) + bold_italic_n ,(11)

where :67:superscript6superscript7\mathcal{M}:\mathbb{R}^{6}\to\mathbb{R}^{7}caligraphic_M : blackboard_R start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT 7 end_POSTSUPERSCRIPT is a multivariate function that implements the system of equations described in Section 3.2 and 𝒏𝒏\boldsymbol{n}bold_italic_n is an additive noise capturing the imperfections of our modelling procedure, the limitations of the summary statistics, and the measurement noise.

3.3.1 The Bayesian formalism.

We interpret the inverse problem of inferring the parameters that best describe a given observed summary feature vector 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as that of determining the posterior distribution of 𝜽𝜽\boldsymbol{\theta}bold_italic_θ given an observation 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. By first choosing a prior distribution p(𝜽)𝑝𝜽p(\boldsymbol{\theta})italic_p ( bold_italic_θ ) describing our initial knowledge of the parameter values, we may use Bayes’ theorem to write

p(𝜽|𝒙0)=p(𝒙0|𝜽)p(𝜽)p(𝒙0),𝑝conditional𝜽subscript𝒙0𝑝conditionalsubscript𝒙0𝜽𝑝𝜽𝑝subscript𝒙0p(\boldsymbol{\theta}|\boldsymbol{x}_{0})=\dfrac{p(\boldsymbol{x}_{0}|% \boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\boldsymbol{x}_{0})}\enspace,italic_p ( bold_italic_θ | bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = divide start_ARG italic_p ( bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | bold_italic_θ ) italic_p ( bold_italic_θ ) end_ARG start_ARG italic_p ( bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG ,(12)

where p(𝒙0|𝜽)𝑝conditionalsubscript𝒙0𝜽p(\boldsymbol{x}_{0}|\boldsymbol{\theta})italic_p ( bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | bold_italic_θ ) is the likelihood of the observed data point and p(𝒙0)𝑝subscript𝒙0p(\boldsymbol{x}_{0})italic_p ( bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is a normalizing constant, commonly referred to as the evidence of the data. Note that such a probabilistic approach returns not only which 𝜽𝜽\boldsymbol{\theta}bold_italic_θ best fits the observed data (i.e. the parameter that maximizes the posterior distribution), but the full posterior distribution p(𝜽|𝒙0)𝑝conditional𝜽subscript𝒙0p(\boldsymbol{\theta}|\boldsymbol{x}_{0})italic_p ( bold_italic_θ | bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). The latter can be possibly multimodal or flat, which would indicate the difficulty of summarizing it with a unique maximum.

3.3.2 Bypassing the likelihood function.

Despite its apparent simplicity, it is usually difficult to use Eq. (12) to determine the posterior distribution, since the likelihood function for data points generated by complex non-linear models is often hard to write. To avoid such difficulty, we directly approximate the posterior distribution using a conditional density estimator, i.e. a family of conditional p.d.f. approximators qϕ(𝜽|𝒙)subscript𝑞italic-ϕconditional𝜽𝒙q_{\phi}(\boldsymbol{\theta}|\boldsymbol{x})italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x ) parametrized by ϕitalic-ϕ\phiitalic_ϕ and that takes 𝜽𝜽\boldsymbol{\theta}bold_italic_θ (the parameter) and 𝒙𝒙\boldsymbol{x}bold_italic_x (the observation) as input arguments. Our posterior approximation is then obtained by minimizing its average Kullback-Leibler divergence with respect to the conditional density estimator for different choices of 𝒙𝒙\boldsymbol{x}bold_italic_x, as per (Papamakarios and Murray, 2016)

min.ϕ(ϕ)with(ϕ)=𝔼𝒙p(𝒙)[DKL(p(𝜽|𝒙)qϕ(𝜽|𝒙))],\begin{array}[]{llll}\underset{\boldsymbol{\phi}}{\mbox{min.}}&\mathcal{L}(% \phi)&\text{with}&\mathcal{L}(\phi)=\mathbb{E}_{\boldsymbol{x}\sim p(% \boldsymbol{x})}\left[D_{\text{KL}}(p(\boldsymbol{\theta}|\boldsymbol{x})\|q_{% \phi}(\boldsymbol{\theta}|\boldsymbol{x}))\right]\leavevmode\nobreak\ ,\end{array}start_ARRAY start_ROW start_CELL underbold_italic_ϕ start_ARG min. end_ARG end_CELL start_CELL caligraphic_L ( italic_ϕ ) end_CELL start_CELL with end_CELL start_CELL caligraphic_L ( italic_ϕ ) = blackboard_E start_POSTSUBSCRIPT bold_italic_x ∼ italic_p ( bold_italic_x ) end_POSTSUBSCRIPT [ italic_D start_POSTSUBSCRIPT KL end_POSTSUBSCRIPT ( italic_p ( bold_italic_θ | bold_italic_x ) ∥ italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x ) ) ] , end_CELL end_ROW end_ARRAY(13)

which can be rewritten as

(ϕ)=DKL(p(𝜽|𝒙)qϕ(𝜽|𝒙))p(𝒙)d𝒙,=log(qϕ(𝜽|𝒙))p(𝜽|𝒙)p(𝒙)d𝜽d𝒙+C,=log(qϕ(𝜽|𝒙))p(𝒙,𝜽)d𝜽d𝒙+C,=𝔼(𝒙,𝜽)p(𝒙,𝜽)[log(qϕ(𝜽|𝒙))]+C,\begin{array}[]{rcl}\mathcal{L}(\phi)&=&{\displaystyle\int}D_{\text{KL}}(p(% \boldsymbol{\theta}|\boldsymbol{x})\|q_{\phi}(\boldsymbol{\theta}|\boldsymbol{% x}))p(\boldsymbol{x})\mathrm{d}\boldsymbol{x}\leavevmode\nobreak\ ,\\[8.99994% pt] &=&-{\displaystyle\iint}\log\big{(}q_{\phi}(\boldsymbol{\theta}|\boldsymbol{x}% )\big{)}p(\boldsymbol{\theta}|\boldsymbol{x})p(\boldsymbol{x})\mathrm{d}% \boldsymbol{\theta}\mathrm{d}\boldsymbol{x}+C\leavevmode\nobreak\ ,\\[8.99994% pt] &=&-{\displaystyle\iint}\log\big{(}q_{\phi}(\boldsymbol{\theta}|\boldsymbol{x}% )\big{)}p(\boldsymbol{x},\boldsymbol{\theta})\mathrm{d}\boldsymbol{\theta}% \mathrm{d}\boldsymbol{x}+C\leavevmode\nobreak\ ,\\[8.99994pt] &=&-\mathbb{E}_{(\boldsymbol{x},\boldsymbol{\theta})\sim p(\boldsymbol{x},% \boldsymbol{\theta})}\left[\log\big{(}q_{\phi}(\boldsymbol{\theta}|\boldsymbol% {x})\big{)}\right]+C\leavevmode\nobreak\ ,\end{array}start_ARRAY start_ROW start_CELL caligraphic_L ( italic_ϕ ) end_CELL start_CELL = end_CELL start_CELL ∫ italic_D start_POSTSUBSCRIPT KL end_POSTSUBSCRIPT ( italic_p ( bold_italic_θ | bold_italic_x ) ∥ italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x ) ) italic_p ( bold_italic_x ) roman_d bold_italic_x , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = end_CELL start_CELL - ∬ roman_log ( italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x ) ) italic_p ( bold_italic_θ | bold_italic_x ) italic_p ( bold_italic_x ) roman_d bold_italic_θ roman_d bold_italic_x + italic_C , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = end_CELL start_CELL - ∬ roman_log ( italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x ) ) italic_p ( bold_italic_x , bold_italic_θ ) roman_d bold_italic_θ roman_d bold_italic_x + italic_C , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL = end_CELL start_CELL - blackboard_E start_POSTSUBSCRIPT ( bold_italic_x , bold_italic_θ ) ∼ italic_p ( bold_italic_x , bold_italic_θ ) end_POSTSUBSCRIPT [ roman_log ( italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x ) ) ] + italic_C , end_CELL end_ROW end_ARRAY(14)

where C𝐶Citalic_C is a constant that does not depend on ϕitalic-ϕ\phiitalic_ϕ. Note, however, that in practice we actually consider a N𝑁Nitalic_N-sample Monte-Carlo approximation of the loss function given by

(ϕ)N(ϕ)=1Ni=1Nlog(qϕ(𝜽i|𝒙i)),italic-ϕsuperscript𝑁italic-ϕ1𝑁superscriptsubscript𝑖1𝑁subscript𝑞italic-ϕconditionalsubscript𝜽𝑖subscript𝒙𝑖\mathcal{L}(\phi)\approx\mathcal{L}^{N}(\phi)=-\frac{1}{N}\sum_{i=1}^{N}\log% \Big{(}q_{\phi}(\boldsymbol{\theta}_{i}|\boldsymbol{x}_{i})\Big{)}\leavevmode% \nobreak\ ,caligraphic_L ( italic_ϕ ) ≈ caligraphic_L start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ( italic_ϕ ) = - divide start_ARG 1 end_ARG start_ARG italic_N end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_log ( italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | bold_italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ) ,(15)

where the N𝑁Nitalic_N data points (𝜽i,𝒙i)subscript𝜽𝑖subscript𝒙𝑖(\boldsymbol{\theta}_{i},\boldsymbol{x}_{i})( bold_italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , bold_italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) are sampled from the joint distribution with 𝜽ip(𝜽)similar-tosubscript𝜽𝑖𝑝𝜽\boldsymbol{\theta}_{i}\sim p(\boldsymbol{\theta})bold_italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_p ( bold_italic_θ ) and 𝒙ip(𝒙|𝜽i)similar-tosubscript𝒙𝑖𝑝conditional𝒙subscript𝜽𝑖\boldsymbol{x}_{i}\sim p(\boldsymbol{x}|\boldsymbol{\theta}_{i})bold_italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∼ italic_p ( bold_italic_x | bold_italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). We can then use stochastic gradient descent to obtain a set of parameters ϕitalic-ϕ\phiitalic_ϕ which minimizes Nsuperscript𝑁\mathcal{L}^{N}caligraphic_L start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. If the class of conditional density estimators is sufficiently expressive, it is possible to show that the minimizer of Eq. (15) converges to p(𝜽|𝒚)𝑝conditional𝜽𝒚p(\boldsymbol{\theta}|\boldsymbol{y})italic_p ( bold_italic_θ | bold_italic_y ) when N𝑁N\to\inftyitalic_N → ∞ (Greenberg et al., 2019). Note, also, that the parametrization ϕitalic-ϕ\phiitalic_ϕ that we obtain by the end of the optimization procedure yields a posterior which is amortized for different choices of 𝒙𝒙\boldsymbol{x}bold_italic_x. Thus, for a specific observation 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT we may simply write qϕ(𝜽|𝒙0)subscript𝑞italic-ϕconditional𝜽subscript𝒙0q_{\phi}(\boldsymbol{\theta}|\boldsymbol{x}_{0})italic_q start_POSTSUBSCRIPT italic_ϕ end_POSTSUBSCRIPT ( bold_italic_θ | bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) to get an approximation of p(𝜽|𝒙0)𝑝conditional𝜽subscript𝒙0p(\boldsymbol{\theta}|\boldsymbol{x}_{0})italic_p ( bold_italic_θ | bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ).

3.3.3 Neural density estimators.

In this work, our conditional p.d.f. approximators belong to a class of neural networks called normalizing flows (Papamakarios et al., 2019). These flows are invertible functions capable of transforming vectors generated by a simple base distribution (e.g. the standard multivariate Gaussian distribution) into an approximation of the true posterior distribution. An important advantage of normalizing flow versus other p.d.f. approximators such as generative adversarial network (GAN (Goodfellow et al., 2014)) and variational auto-encoders (VAE (Kingma and Welling, 2019)) is that it provides both the likelihood of any sample point of interest and it is also straightforward to sample new data points from it. Furthermore, certain classes of normalizing flows can be shown to be universal approximators of probability density functions. We refer the reader to Papamakarios et al. (2019) for more information on the different types of normalizing flows.

4 Materials and methods

This section presents the technical details on how we have implemented our theoretical contributions and describes the simulated and real datasets used in the numerical illustrations.

4.1 The likelihood-free inference setup

Using a likelihood-free inference approach for inverting the 3-compartment model relating tissue parameters 𝜽𝜽\boldsymbol{\theta}bold_italic_θ and dMRI summary statistics 𝒙𝒙\boldsymbol{x}bold_italic_x relies on four important aspects:

  1. (1)

    The forward model. As explained in Section 3.3, we obtain an approximation of the amortized posterior distribution using a dataset containing several paired examples of a parameter 𝜽isubscript𝜽𝑖\boldsymbol{\theta}_{i}bold_italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and its corresponding summary statistics 𝒙isubscript𝒙𝑖\boldsymbol{x}_{i}bold_italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. In what follows, we adopt the usual assumptions from the inverse problems literature and consider the additive noise 𝒏𝒏\boldsymbol{n}bold_italic_n from Eq. (11) small enough to be ignored in the data generation, so that we have 𝒙i(𝜽i)subscript𝒙𝑖subscript𝜽𝑖\boldsymbol{x}_{i}\approx\mathcal{M}(\boldsymbol{\theta}_{i})bold_italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≈ caligraphic_M ( bold_italic_θ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ).

  2. (2)

    Prior distribution. The simplest way of defining a prior distribution p(𝜽)𝑝𝜽p(\boldsymbol{\theta})italic_p ( bold_italic_θ ) in our setting is to use an uniform distribution with limits within physiologically relevant intervals for each parameter. From Section 3.1, we know that the fractions fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, fnsubscript𝑓𝑛f_{n}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, and fECSsubscript𝑓ECSf_{\text{ECS}}italic_f start_POSTSUBSCRIPT ECS end_POSTSUBSCRIPT have values between 0 and 1 and all sum up to one. To encode this information in p(𝜽)𝑝𝜽p(\boldsymbol{\theta})italic_p ( bold_italic_θ ), we define new parameters k1subscript𝑘1k_{1}italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and k2subscript𝑘2k_{2}italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and relate them with the fractions by

    fn=k2k1,fs=k1(1k2),fECS=1k1.formulae-sequencesubscript𝑓𝑛subscript𝑘2subscript𝑘1formulae-sequencesubscript𝑓𝑠subscript𝑘11subscript𝑘2subscript𝑓ECS1subscript𝑘1f_{n}=k_{2}\sqrt{k_{1}},\quad f_{s}=\sqrt{k_{1}}(1-k_{2}),\quad f_{\text{ECS}}% =1-\sqrt{k_{1}}\leavevmode\nobreak\ .italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = square-root start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ( 1 - italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , italic_f start_POSTSUBSCRIPT ECS end_POSTSUBSCRIPT = 1 - square-root start_ARG italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG .(16)

    In this way, whenever we want to generate a prior sample for (fn,fs,fECS)subscript𝑓𝑛subscript𝑓𝑠subscript𝑓ECS(f_{n},f_{s},f_{\text{ECS}})( italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT ECS end_POSTSUBSCRIPT ) we first generate a sample of k1,k2𝒰([0,1])similar-tosubscript𝑘1subscript𝑘2𝒰01k_{1},k_{2}\sim\mathcal{U}([0,1])italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∼ caligraphic_U ( [ 0 , 1 ] ) and then transform them according to (16) to get a set of fractions which is uniformly sampled in the region {fn,fs,fECS[0,1]:fn+fs+fECS=1}conditional-setsubscript𝑓𝑛subscript𝑓𝑠subscript𝑓ECS01subscript𝑓𝑛subscript𝑓𝑠subscript𝑓ECS1\{f_{n},f_{s},f_{\text{ECS}}\in[0,1]\leavevmode\nobreak\ :f_{n}+f_{s}+f_{\text% {ECS}}=1\}{ italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT ECS end_POSTSUBSCRIPT ∈ [ 0 , 1 ] : italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT + italic_f start_POSTSUBSCRIPT ECS end_POSTSUBSCRIPT = 1 }. We follow the usual assumption that the diffusivity of the compartments are inferior or equal to the self-diffusion coefficient of free water, which is 3 µm2 ms1times3timesmicrometer2millisecond13\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG end_ARG (Li et al., 2016). We fix, therefore, the interval for neurite diffusivity (Dnsubscript𝐷𝑛D_{n}italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT) as between 105superscript10510^{-5}10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT and 3333 µm2 ms1timesmicrometer2millisecond1{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG. The newly introduced parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is parametrized by soma radius and diffusivity. To account for a soma radius comprised between 2 and 30 µmtimes30micrometer30\text{\,}\mathrm{\SIUnitSymbolMicro m}start_ARG 30 end_ARG start_ARG times end_ARG start_ARG roman_µ roman_m end_ARG (Palombo et al., 2021) and a diffusivity range as previously defined, we used the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT interval [50, 2500] µm2micrometer2{\mathrm{\SIUnitSymbolMicro m}}^{2}power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG. Parameter p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, which measures the dispersion of neurites orientation, is comprised in the interval [0,1], with 1 indicating an anisotropic orientation distribution function.

  3. (3)

    Posterior approximator. We use an autoregressive architecture for normalizing flows implemented via the masked autoencoder for distribution estimation (MADE) (Germain et al., 2015). We follow the same setup from Greenberg et al. (2019) for LFI problems, stacking five MADEs, each with two hidden layers of 50 units, and a standard normal base distribution. This choice provides a sufficiently flexible function capable of approximating complex posterior distributions.

  4. (4)

    Training procedure. The parametrization of our normalizing flow is obtained by minimizing the loss function (15) using the ADAM optimizer (Kingma and Ba, 2014) with default parameters, a learning rate of 5.104superscript5.1045.10^{-4}5.10 start_POSTSUPERSCRIPT - 4 end_POSTSUPERSCRIPT and a batch size of 100. Except for a few validation experiments, we have used N=105𝑁superscript105N=10^{5}italic_N = 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT simulated data points to approximate the posterior distribution.

4.2 Simulated dMRI data

We first validate our proposed method using simulated dMRI data. For this, we fix a parameter vector 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT based on a plausible biophysical configuration (Palombo et al., 2021) and generate a simulated observation 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT associated to it. Our goal, then, is to check whether the posterior distribution p(𝜽|𝒙0)𝑝conditional𝜽subscript𝒙0p(\boldsymbol{\theta}|\boldsymbol{x}_{0})italic_p ( bold_italic_θ | bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) concentrates around the ground truth parameter, i.e. if it is peaked around the true values of the parameters in 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. If this is the case, we can assert that the LFI procedure is capable of inverting our non-linear model successfully.

The simplest way of generating an observation from the ground truth parameter would be to use the forward model defined in Section 4.1, which yields very good results, since the posterior approximation is trained on data points generated in the same way. We have also considered a more challenging situation, in which the dMRI signals are simulated following a setup that is closer to what we would expect from real experimental experiments. This is based on two steps. Firstly, we use the dmipy simulator (Fick et al., 2019) to simulate the three-compartment model described in Section 3.1 and obtain a dMRI signal 𝑺0subscript𝑺0\boldsymbol{S}_{0}bold_italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Then, we calculate the summary statistics of this signal as defined in Section 3.2 to reduce the dimensionality of the observation and obtain a feature vector 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

We have carried out our simulations on dmipy considering three different kinds of acquisition setup. They all have b𝑏bitalic_b-shells with 128 uniformly distributed directions, but they differ in their b𝑏bitalic_b-values and acquisition times:

  • Setup Ideal corresponds to a rather “confortable” case with 10 b𝑏bitalic_b-values between 0 and 10 ms µm2times10timesmillisecondmicrometer210\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 10 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG. We use δ/Δ𝛿Δ\delta/\Deltaitalic_δ / roman_Δ = 12.9/21.8 mstimesdivide12.921.8millisecond12.9\text{/}21.8\text{\,}\mathrm{ms}start_ARG start_ARG 12.9 end_ARG start_ARG divide end_ARG start_ARG 21.8 end_ARG end_ARG start_ARG times end_ARG start_ARG roman_ms end_ARG as in the HCP MGH database.

  • Setup HCP MGH reproduces the setup from the HCP MGH dataset, with 5 b𝑏bitalic_b-values: 0, 1, 3, 5, and 10 ms µm2times10timesmillisecondmicrometer210\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 10 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG and δ/Δ𝛿Δ\delta/\Deltaitalic_δ / roman_Δ = 12.9/21.8 mstimesdivide12.921.8millisecond12.9\text{/}21.8\text{\,}\mathrm{ms}start_ARG start_ARG 12.9 end_ARG start_ARG divide end_ARG start_ARG 21.8 end_ARG end_ARG start_ARG times end_ARG start_ARG roman_ms end_ARG. Since the Spiked LEMONADE approximation (3.2.2) requires at least three b𝑏bitalic_b-values inferior to 2.5 ms µm2times2.5timesmillisecondmicrometer22.5\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 2.5 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG, we extrapolated an extra b𝑏bitalic_b-shell at 0.1 ms µm2times0.1timesmillisecondmicrometer20.1\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 0.1 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG using MAPL (Fick et al., 2016), a method for modeling multi-shell q-space signals.

  • Setup HCP 1200 reproduces the setup from the HCP 1200 dataset, with only 4 b𝑏bitalic_b-values: 0, 1, 2, and 3 ms µm2times3timesmillisecondmicrometer23\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG and δ/Δ𝛿Δ\delta/\Deltaitalic_δ / roman_Δ = 10.6/43.1 mstimesdivide10.643.1millisecond10.6\text{/}43.1\text{\,}\mathrm{ms}start_ARG start_ARG 10.6 end_ARG start_ARG divide end_ARG start_ARG 43.1 end_ARG end_ARG start_ARG times end_ARG start_ARG roman_ms end_ARG An extra b-shell at 2.8 ms µm2times2.8timesmillisecondmicrometer22.8\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 2.8 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG has been interpolated to be used in the RTOP approximation.

Note that in the simulations with all setups we have used the three b𝑏bitalic_b-shells with the lowest b𝑏bitalic_b-values for the small q𝑞qitalic_q-value approximation (Spiked LEMONADE), and the three largest q𝑞qitalic_q-values for the RTOP approximation.

4.3 HCP MGH dataset

After validating our proposal on different simulated settings, we carried out our analysis on two publicly available databases. Our goal was to estimate the tissue parameters for each voxel in the dMRI acquisitions corresponding to the grey matter and determine how these parameters vary. We segmented the brain grey matter using FreeSurfer before applying our pipeline to the selected voxels. Because of the probabilistic framework that we use, these estimates are accompanied of credible intervals that can be used to inform our degree of confidence of these estimates.

Our first analysis was on the HCP MGH Adult Diffusion database (Setsompop et al., 2013). This database is composed of 35 subjects with δ/Δ=12.9/21.8 ms𝛿Δ12.9times21.8millisecond\delta/\Delta=12.9/$21.8\text{\,}\mathrm{ms}$italic_δ / roman_Δ = 12.9 / start_ARG 21.8 end_ARG start_ARG times end_ARG start_ARG roman_ms end_ARG and b𝑏bitalic_b = 1, 3, 5, 10 ms µm2times10timesmillisecondmicrometer210\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 10 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG. We used the 3, 5 and 10 ms µm2times10timesmillisecondmicrometer210\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 10 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG b𝑏bitalic_b-values for the RTOP approximation (i.e. the large q𝑞qitalic_q-value analysis), and 0, 0.1 and 1 ms µm2times1timesmillisecondmicrometer21\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 1 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG for the Spiked LEMONADE approximation. We used MAPL with the 0, 1 and 3 ms µm2times3timesmillisecondmicrometer23\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG b𝑏bitalic_b-values to reduce noise and interpolate a b𝑏bitalic_b-value of 0.1 ms µm2times0.1timesmillisecondmicrometer20.1\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 0.1 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG to improve the estimations. Desubscript𝐷𝑒D_{e}italic_D start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT was estimated as 1/3131/31 / 3 of the mean diffusivity in the ventricles.

The spatial distribution of the estimated parameters were mapped to the MNI template, averaged over all subjects, and then projected onto an inflated cortical surface using FreeSurfer. We have then evaluated whether such distributions seemed physiologically plausible by using the Brodmann atlas (Brodmann, 1909; Zilles, 2018), which is a parcellation of the brain based on cytoarchitecture features. In addition, we compared qualitatively the results of soma estimations with Nissl-stained histological images of cytoarchitecture (Allman et al., 2010; Amunts et al., 1999; Geyer et al., 1999).

4.4 HCP 1200

We proceeded with our analysis on real data using a more challenging database, in which the dMRI signals were acquired with only a few small b𝑏bitalic_b-values. Our goal was to demonstrate that the credible regions obtained via the posterior approximation can be used to inform which parameters remain possible to estimate even in very challenging situations. Note that this unlocks the door to the analysis of any dMRI database, since the estimates always come with a “quality certificate”.

We applied our pipeline to a subset of the HCP 1200 database. We randomly picked 30 subjects, to have an identical number of subjects to that in our analysis of the HCP MGH database. The data were acquired for b𝑏bitalic_b-values equal to 1, 2 and 3 ms µm2times3timesmillisecondmicrometer23\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG, with δ/Δ=10.6/43.1 ms𝛿Δ10.6times43.1millisecond\delta/\Delta=10.6/$43.1\text{\,}\mathrm{ms}$italic_δ / roman_Δ = 10.6 / start_ARG 43.1 end_ARG start_ARG times end_ARG start_ARG roman_ms end_ARG. Using MAPL, we interpolated a b-shell at 2.8 ms µm2times2.8timesmillisecondmicrometer22.8\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 2.8 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG to improve the computation of the summary statistics. We used all the three lowest b𝑏bitalic_b-values for the Spiked LEMONADE approximation, and b𝑏bitalic_b = 2, 2.8 and 3 ms µm2times3timesmillisecondmicrometer23\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG for the high b𝑏bitalic_b-value approximation based on RTOP. Similarly to the HCP MGH dataset, we have averaged the parameter estimations in a common space (MNI) and then projected the resulting parametric maps onto an inflated cortical surface.

4.5 Software

All our experiments have been implemented with Python (Van Rossum and Drake, 2009) using several scientific packages: dMRI signals were simulated with the package dmipy (Fick et al., 2019) and processed using dipy (Garyfallidis et al., 2014) or custom implementations based on numpy (Harris et al., 2020). We used the sbi (Tejero-Cantero et al., 2020) and nflows (Durkan et al., 2020) packages for carrying out the LFI procedures and combined them with data structures and functions from pyTorch (Paszke et al., 2019). The figures of results on real experimental data were generated with mayavi (Ramachandran and Varoquaux, 2011).

5 Results

In this section, we describe our results obtained on simulated data and two real datasets.

5.1 Simulated data

5.1.1 Validating the LFI pipeline.

In this first round of experiments, our aim was to check whether the LFI pipeline worked correctly on a setting where we knew the true values of the parameter 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT (ground truth) generating the observed data 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Furthermore, we wanted to confirm whether the use of summary statistics for the dMRI signal actually conveyed any improvements in the parameter estimation. We have considered, therefore, three different cases:

  • Case 1. Generate 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT directly from 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT using the forward model defined in Section 4.1. This is a rather favorable case for our posterior approximation, since it is applied on a data point generated in the same way as the dataset in which it was trained.

  • Case 2. Generate a dMRI signal 𝑺0subscript𝑺0\boldsymbol{S}_{0}bold_italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from 𝜽𝟎subscript𝜽0\boldsymbol{\theta_{0}}bold_italic_θ start_POSTSUBSCRIPT bold_0 end_POSTSUBSCRIPT using dmipy and then obtain 𝒙0subscript𝒙0\boldsymbol{x}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT by calculating the summary statistics presented in Section 3.2. We use the same posterior approximator from Case 1, meaning that the data point in inference time is generated differently from those for the training procedure. This is the actual realistic case that interests us the most.

  • Case 3. Generate a dMRI signal 𝑺0subscript𝑺0\boldsymbol{S}_{0}bold_italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT from 𝜽𝟎subscript𝜽0\boldsymbol{\theta_{0}}bold_italic_θ start_POSTSUBSCRIPT bold_0 end_POSTSUBSCRIPT using dmipy and do not use any summary statistics for the model inversion, i.e. consider 𝒙0=𝑺0subscript𝒙0subscript𝑺0\boldsymbol{x}_{0}=\boldsymbol{S}_{0}bold_italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = bold_italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Note that the posterior approximator has to be trained on a dataset with observations consisting of dMRI signals, so it is different from the approximators in Case 1 and Case 2. Depending on how the LFI pipeline behaves on this case, the use of summary statistics can be justified or not.

All simulations were carried out with setup Ideal, which corresponds to an ideal dMRI acquisition scheme, and the posterior approximators were trained with N=105𝑁superscript105N=10^{5}italic_N = 10 start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT simulated data points. While we have validated the LFI pipeline on multiple choices of physiologically relevant ground truth parameters 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, Figure 1 portrays the results only for

𝜽0=(Dn,Cs,p2,fs,fn,fECS)=(2.5µm2 ms1,617µm2,0.50,0.15,0.45,0.40).subscript𝜽0subscript𝐷𝑛subscript𝐶𝑠subscript𝑝2subscript𝑓𝑠subscript𝑓𝑛subscript𝑓ECS2.5timesmicrometer2millisecond1617micrometer20.500.150.450.40\boldsymbol{\theta}_{0}=(D_{n},C_{s},p_{2},f_{s},f_{n},f_{\mathrm{ECS}})=(2.5% \leavevmode\nobreak\ ${\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}% }^{-1}$,617\leavevmode\nobreak\ ${\mathrm{\SIUnitSymbolMicro m}}^{2}$,0.50,0.1% 5,0.45,0.40)\leavevmode\nobreak\ .bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_f start_POSTSUBSCRIPT roman_ECS end_POSTSUBSCRIPT ) = ( 2.5 start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG , 617 power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG , 0.50 , 0.15 , 0.45 , 0.40 ) .

This choice of parameters represent a sample tissue containing pyramidal neurons of radius 12 µmtimes12micrometer12\text{\,}\mathrm{\SIUnitSymbolMicro m}start_ARG 12 end_ARG start_ARG times end_ARG start_ARG roman_µ roman_m end_ARG (Palombo et al., 2021) and diffusivity 3 µm2 ms1times3timesmicrometer2millisecond13\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG end_ARG. The three compartment proportions were chosen in accordance to reported values from histology of human grey matter tissue (Shapson-Coe et al., 2021). Results are presented in Figure 1. We see that in Case 1 the marginals of the posterior distribution are well concentrated around the values of the ground truth parameter 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This confirms that the posterior approximator successfully inverts the non-linear model using the examples in the training set. We also see that the parameter estimation in Case 2 captures very well most of the true values of the parameters, indicating both that our posterior approximator is robust to observed data generated differently from its training set and that our summary statistics are descriptive enough to synthesize each tissue configuration. Finally, the poor results in the estimation for Case 3 reflect the largely indeterminate system of equations that results from trying to infer the tissue parameters directly from the dMRI signals. This behavior was expected, as similar degeneracies were shown for a simpler model in Novikov et al. (2018a).

5.1.2 Influence of the number of b𝑏bitalic_b-values.

We have also investigated how different choices of b𝑏bitalic_b-values in the acquisition scheme affect the quality of the parameter estimation using the posterior approximation. Note that these choices have no influence on how the posterior approximator is obtained, since it is trained on data generated directly from the relations between tissue parameters and the diffusion summary statistics, in which the b𝑏bitalic_b-values do not interact. In fact, the different acquisition setups that we consider have only an impact over the observed data point generated via dmipy. Figure 2 portrays the marginal posterior distributions for each tissue parameter in setups Ideal, HCP MGH, and HCP 1200. We see that estimations in the Ideal setup (equivalent to Case 2 in Figure 1) are very much concentrated around the true values of the parameters. For HCP MGH and HCP 1200 the estimations of the soma-related parameters are rather good, but a small bias is present for the other parameters in HCP MGH and even more for HCP 1200. Note that the Ideal and HCP MGH ground truth value of Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (vertical black dashed line) is different from the one of the HCP 1200 setup (vertical green dashed line), because of their different diffusion times. These simulations allow us to have a fair confidence in the estimations on real data, presented in Sections 5.2 and 5.3.

Refer to caption
Figure 1: Histograms of 104superscript10410^{4}10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT samples of the approximate posterior distribution in three different base cases (see text for details). Vertical black dashed lines represent ground truth values of 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT which generated the observed dMRI signals. We observe that the marginals tend to concentrate around the ground truth parameters when the observed summary statistics are obtained directly from the parameters (Case 1) and have a small bias when the signals are generated using dmipy (Case 2). The figure also shows that inverting the model directly from the dMRI signals leads to rather poor results (Case 3).
Refer to caption
Figure 2: Histograms of 104superscript10410^{4}10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT samples of the approximate posterior distribution with observed dMRI signals generated under three acquisition setups (see text for details). Vertical black dashed lines represent ground truth values of 𝜽0subscript𝜽0\boldsymbol{\theta}_{0}bold_italic_θ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT which generated the observed signals (the green dashed line indicates the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT value expected for the HCP 1200 setup). We see that while the Ideal case delivers very good estimates, the results for the two other setups are only reliable for a subset of the tissue parameters.

5.1.3 Our new parameter avoids model indeterminacy.

In Section 3.1, we introduce the parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, which serves as a proxy of the soma radius and provides key information on the soma compartment. In this experiment, we illustrate the results of our model inversion if we had not defined parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT.

Figure 3 presents the marginal posterior distributions of rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT as well as their joint distribution using the setup Ideal. To obtain these results, we have altered our LFI pipeline so to consider an extended parameter vector including rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. The prior distribution reflects our assumption that rs[105,30]subscript𝑟𝑠superscript10530r_{s}\in[10^{-5},30]italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∈ [ 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT , 30 ] µmmicrometer\mathrm{\SIUnitSymbolMicro m}roman_µ roman_m and Ds[1,3]subscript𝐷𝑠13D_{s}\in[1,3]italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ∈ [ 1 , 3 ] µm2 ms1timesmicrometer2millisecond1{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG and we consider ground truth parameters rs=subscript𝑟𝑠absentr_{s}=italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 17.5 µmtimes17.5micrometer17.5\text{\,}\mathrm{\SIUnitSymbolMicro m}start_ARG 17.5 end_ARG start_ARG times end_ARG start_ARG roman_µ roman_m end_ARG and Ds=subscript𝐷𝑠absentD_{s}=italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 2.3 µm2 ms1times2.3timesmicrometer2millisecond12.3\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}start_ARG 2.3 end_ARG start_ARG times end_ARG start_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG end_ARG. We note that in addition to larger marginal posterior distributions for each parameter, the joint posterior has a valley of large values for the (rs,Ds)subscript𝑟𝑠subscript𝐷𝑠(r_{s},D_{s})( italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT , italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) pair, including the ground truth parameters. This result is typical of non-injective models, i.e. models for which several input parameters may yield the same output observation, and is an important asset of a probabilistic framework such as ours.

Refer to caption
Figure 3: (A) Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT dependence on soma radius rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and diffusivity Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. We see that there are several values of (dssubscript𝑑𝑠d_{s}italic_d start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) that yield the same Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. (B) and (C) Histograms of 104superscript10410^{4}10 start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT samples from the marginal and joint posterior distributions of ds=2rssubscript𝑑𝑠2subscript𝑟𝑠d_{s}=2r_{s}italic_d start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = 2 italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. The ridge in the joint distribution indicates that there are several possible values for the pair (dssubscript𝑑𝑠d_{s}italic_d start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) with high probability, which are those yielding the same Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT. Estimating Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT directly bypasses this indeterminacy.

5.1.4 Assessing the variances of estimated parameters.

Deriving the posterior distributions of the parameter vectors allows us to report the values of the most likely tissue parameters for a given observation, along with our certitude regarding our inference. Figure 4 presents the logarithm of the standard deviation of the marginal posterior samples for different ground truth parameter choices (varying fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and fnsubscript𝑓𝑛f_{n}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT) under setup Ideal. These values indicate how sharp a posterior distribution is and, therefore, quantify the quality of the fit. We observe larger standard deviations in the absence (or weak presence) of soma compartments in the mixture signal, e.g., the standard deviation of Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT is large when few or no somas are present (fs0subscript𝑓𝑠0f_{s}\approx 0italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ≈ 0). This is to be expected, since the lack of contribution from the somas in the diffusion signal makes it difficult to estimate parameters related to them.

Refer to caption
Figure 4: Logarithm of the standard deviations for the marginal posterior distribution of Dnsubscript𝐷𝑛D_{n}italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, and p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT with different choices of ground truth parameters (varying fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT and fnsubscript𝑓𝑛f_{n}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT). Since the ranges of values for each plot were quite different, we labeled the colorbar in terms of {‘high’, ‘medium’, ‘low’} values of standard deviations so to provide mainly qualitative information to the reader. We see that when the signal fraction of somas decreases (fs0subscript𝑓𝑠0f_{s}\to 0italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT → 0) the standard deviation of the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT-estimation increases; and when less neurites are present (fn0subscript𝑓𝑛0f_{n}\to 0italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → 0) the standard deviation of p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and Dnsubscript𝐷𝑛D_{n}italic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT increase.

5.2 HCP MGH

Our results on simulated data show that, although we manage to invert very well the brain tissue parameter on settings for which the dMRI signal is obtained with several b𝑏bitalic_b-values, the estimates for more realistic settings are less robust and demand a more subtle analysis. Indeed, we have observed that for both setups HCP MGH and HCP 1200 the soma parameters seem to be rather well estimated without too much bias, which has lead us to consider mainly these parameters in our interpretations of the results.

Figure 5 presents the results on the HCP MGH dataset. The inference takes approximately one hour per subject using 20 CPUs, and the estimation of the seven parameters for every voxel in the grey matter is about 3 hours per subject, when computed in parallel on 20 CPUs. We have masked our results so to show only areas where parameters were deemed stable, i.e. when the values were larger than 2 times the LFI-obtained standard deviations of the fitted posterior, indicating that the posterior distribution is narrow and centered around its mean value. We observe a lack of stability on small sections including the auditory cortex and the precentral gyrus fundus. Our figure assesses qualitatively the results on soma size by comparing with Nissl-stained histological studies (Allman et al., 2010; Amunts et al., 1999; Geyer et al., 1999). Our comparison shows good agreement between different cortical areas and the parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, which, under nearly-constant intra-soma diffusion Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, is modulated by soma size. Note that we modeled brain gray matter as homogeneous per voxel. That is, we suppose only one type of neuron is present in each voxel. The most probable one is returned by the LFI approach.

Refer to caption
Figure 5: Microstructural measurements averaged over 31 HCP MGH subjects. We deemed stable measurements with a z-score larger than 2, where the standard deviation on the posterior estimates was estimated through our LFI fitting approach. In comparing with Nissl-stained cytoarchitectural studies we can qualitatively evaluate our parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT: Broadmann area 44 (A) has smaller soma size in average than area 45 (B) (Amunts et al., 1999); large von Economo neurons predominate the superior anterior insula (C) (Allman et al., 2010); precentral gyrus (E) shows very small somas while post-central (D) larger ones (Geyer et al., 1999).

Interestingly, most regions of Figure 6 in which the parameter estimation has low confidence are located in the fundus of the sulci. Two main hypothesis could explain such behavior. Firstly, brain regions which are very curved may be more prone to mixing between tissue layers and CSF, which generates noisier signals. Thus, the estimation of summary statistics becomes more biased and the posterior distributions tend to be wider. Another possible explanation, based on cytoarchitecture considerations, points out the fact that the fundus of sulci is where sharp changes in cellular populations happen (Brodmann, 1909; Pandya et al., 2015). A mixing of several types of neurons in one voxel could generate multi-modal posterior distributions, and hence a region with large variance.

Refer to caption
Figure 6: Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT estimations averaged over 31 HCP MGH subjects, with unstable results masked, projected onto inflated (A) and pial (B) surfaces. Interestingly, low confidence areas correspond to the fundus of the sulci.

Figure 7A reports the soma proportion (parameter fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) averaged over 31 HCP MGH subjects, masking unstable results. Mean soma signal proportion in the cortex equals 0.220.220.220.22 (mean computed in trusted estimations only). These results are coherent with the mean volume occupancy of 1020%10percent20\leavevmode\nobreak\ 10-20\%10 - 20 % observed in grey matter (Shapson-Coe et al., 2021). To interpret the results at a region-based level, we have superimposed the soma proportion estimations with the Brodmann atlas. We observe a general agreement between the estimations and the atlas, and more particularly in the somatosensory and Broca’s areas. A clear difference in soma proportion can be observed in the 12 regions, as presented in the barplot.

Despite the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT parameter being useful for avoiding indeterminacies in the model inversion, its biological interpretation remains difficult. With the goal of relating our Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT estimation with physiological insight, we estimated soma radius rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT by fixing soma diffusivity. Similarly to the SANDI method, we fixed soma diffusivity Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT to the value of the self-diffusion coefficient of free water (3 µm2 ms1times3timesmicrometer2millisecond13\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG end_ARG). Note that this value could be adjusted for each voxel, and is only used here in a matter of comparison and interpretation. Using a fixed-point method, we computed the soma radius rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT from the averaged Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT map obtained from our posterior distribution. The results are portrayed in Figure 7B. We see that the estimated soma radius vary between 8888 and 14 µmtimes14micrometer14\text{\,}\mathrm{\SIUnitSymbolMicro m}start_ARG 14 end_ARG start_ARG times end_ARG start_ARG roman_µ roman_m end_ARG, which is in accordance with histology (Palombo et al., 2021). Mean Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT values are presented in the barplot beneath the soma radius estimations in the different Brodmann regions.

Refer to caption
Figure 7: (Left) The average soma proportion (fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) over the 31 HCP MGH subjects is projected onto an inflated cortical surface, with unstable results masked; see text for details. We also show the main Brodmann areas available on FreeSurfer. The mean values of fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT over these regions (using only reliable estimations) are reported on the bar plots below. (Right) Soma radius map computed from Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT with soma diffusivity fixed to Ds=3 µm2 ms1subscript𝐷𝑠times3timesmicrometer2millisecond1D_{s}=$3\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{2}\text{\,}{\mathrm{ms}}^{-1}$italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT = start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG 2 end_ARG end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_ms end_ARG start_ARG - 1 end_ARG end_ARG end_ARG, averaged on 31 subjects. The bar plots below report the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT mean values on main Brodmann areas. We observe a good agreement between our reported values and the Brodmann areas.

5.3 HCP 1200

Figure 8 shows the results obtained on a database with only three b𝑏bitalic_b-shells. We see that 55 % of the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT estimations on brain grey matter is considered unstable and is, therefore, masked. Indeed, our q𝑞qitalic_q-bounded RTOP approximation relies on high b𝑏bitalic_b-values, where the signal is expected to have converged towards a value that depends on the radius of the soma. The larger the soma, the sooner the q𝑞qitalic_q-bounded RTOP converges. However, the largest b𝑏bitalic_b-value contained in this database equals 3 ms µm2times3timesmillisecondmicrometer23\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG, which is not enough for the signal to have converged. Thus, the poor quality of the summary statistics estimation leads to rather wide posterior distributions, resulting in unreliable results, as shown in simulations. Note, however, that estimations of the superior temporal gyrus for example are not masked, and both data sets seem to indicate large neurones in that region. The estimation of Dasubscript𝐷𝑎D_{a}italic_D start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT is considered as unstable for 98.7% of the data set. This behavior was expected, given the results presented in Figure 2, for which a large bias is observed.

Refer to caption
Figure 8: Spatial distribution of the Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT estimations averaged over 30 HCP 1200 subjects and projected onto an inflated cortical surface, with unstable estimations masked. Due to the scarce and rather low b𝑏bitalic_b-values (\leq 3 ms µm2times3timesmillisecondmicrometer23\text{\,}\mathrm{ms}\text{\,}{\mathrm{\SIUnitSymbolMicro m}}^{-2}start_ARG 3 end_ARG start_ARG times end_ARG start_ARG start_ARG roman_ms end_ARG start_ARG times end_ARG start_ARG power start_ARG roman_µ roman_m end_ARG start_ARG - 2 end_ARG end_ARG end_ARG) used in the database, the results are very unstable and, therefore, many voxels are discarded.

6 Discussion

6.1 Validation simulated data

An important aspect of our work is the thorough validation that we have carried out on simulated data, using different acquisition setups and ways of generating diffusion signals. Part of this validation had the goal of ensuring that our method gave consistent results on simple standard cases, as confirmed by the results in Figure 1. Additionally, we have demonstrated the benefits of using summary statistics for describing dMRI signals, attaining better parameter estimates when using them instead of directly manipulating the diffusion signals. Such results are very encouraging and should push other researchers into using these summary statistics for processing their dMRI signals.

Another relevant byproduct of our validation was observing that the quality of the parameter estimations depends heavily on the distribution of b𝑏bitalic_b-values used to acquire and simulate the dMRI signals. Indeed, if only small b𝑏bitalic_b-values are available, the summary statistics of dMRI signals are poorly estimated and the parameter estimation too. Based on this observation, we were able to apply our LFI pipeline to real datasets HCP MGH and HCP 1200 knowing in advance the limitations of our methodology; for example, we knew from which parameters we could expect good estimates (mostly soma-related ones) and which ones should not be taken into account in our analysis.

6.2 Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT: A proxy to soma size

Estimating both soma radius (rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) and diffusivity (Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) with diffusion MRI is a challenging task. When trying to estimate them separately, we can expect a ‘banana-shape’ in their joint posterior distribution as shown in Figure 3. This indicates that several values of the pair (rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT) can explain the observed signal with high probability and, therefore, one is confronted with model indeterminacy.

The new parameter Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT that we introduce in this paper is modulated both by the soma radius and its diffusivity. Thus, estimating it directly avoids problems of indeterminacy, as shown in Figure 1, for example. Note, however, that avoiding such indeterminacy comes with the price of losing specificity and, therefore, physiological interpretations. Fortunately, acquisitions in the narrow or wide pulse regimes allow us to better interpret estimations of Cssubscript𝐶𝑠C_{s}italic_C start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, as it only depends on rssubscript𝑟𝑠r_{s}italic_r start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT or Dssubscript𝐷𝑠D_{s}italic_D start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT (see Section 3.1).

6.3 Can I apply this approach to my data?

One of the main benefits of a probabilistic framework is that it can be applied to any data set or acquisition setup without too much hesitation, since the estimates always come with a “quality certificate” described by the credible regions derived from the posterior distribution. We have benefited from this feature when creating all figures related to databases HCP MGH and HCP 1200, since they allow us to mask regions for which the variance of the parameter estimation is too high. We can also use it as a proxy to identify regions for which the three-compartment model is adequate or not, or assessing whether the distribution of b𝑏bitalic_b-values used to acquire the observed diffusion signal is sufficiently informative. Note, however, that it would not be realistic to expect that our method should give acceptable results on every database to which it is applied. Indeed, the distribution of b𝑏bitalic_b-values used to acquire the data under study is a key predictor of whether the estimated posterior distribution will be useful for inverting the three-compartment model or not. For instance, if the b𝑏bitalic_b-values are too small, then the RTOP summary statistics will be poorly estimated in most voxels, leading to unreliable estimations; only regions with larger somas will be correctly estimated. Similarly, if the acquisition uses only b𝑏bitalic_b-values much greater than zero, the Spiked LEMONADE moments will be biased, which also leads to neurite estimations with large variability. These observations were useful when analyzing the HCP 1200 database, since the distribution of b𝑏bitalic_b-values are concentrated at low values and, therefore, our estimations are prone to bias and have large variances.

6.4 Limitations and perspectives

There are many extensions that we could envision for the method that we propose.

The proposed approach has been designed and applied to brain grey matter, but one could also want to apply it to brain white matter (see Supplementary Material). Results on the HCP MGH dataset indicate that the axons distribution is more anisotropic in white matter than grey matter (p2,WM>p2,GMsubscript𝑝2𝑊𝑀subscript𝑝2𝐺𝑀p_{2,WM}>p_{2,GM}italic_p start_POSTSUBSCRIPT 2 , italic_W italic_M end_POSTSUBSCRIPT > italic_p start_POSTSUBSCRIPT 2 , italic_G italic_M end_POSTSUBSCRIPT), with values coherent to the ones obtained with the LEMONADE framework (Novikov et al., 2018b). Somas are also less present in white matter than grey matter, as indicated by a lower signal fraction fssubscript𝑓𝑠f_{s}italic_f start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT, which is expected from histology (Shapson-Coe et al., 2021). However, the ECS model used in the three-compartment model defines its diffusivity as isotropic. While this assumption seems to hold in brain gray matter, a tensor representation is usually preferred for the ECS diffusivity, as it is the case in the SM (Novikov et al., 2018a). The application of a similar LFI pipeline based on a model designed for brain white matter (such as the SM) could help improve the estimations of tissue parameters and better interpret its output thanks to the posterior distributions. As an example, this pipeline could be a new way to solve the LEMONADE system of equations proposed by Novikov et al. (2018b) within a probabilistic framework.

The three-compartment model that we use approximates well the intra-cellular signal in brain grey matter tissue by adding a sphere compartment to account for soma presence (Palombo et al., 2020). However, this is a rather simplified model and it could be improved; for instance, the geometry of ECS is very restricted and tortuous, and diffusion signals have been proven to deviate from a mono-exponential behavior (Vincent et al., 2021). A first improvement could be, as mentioned before, to deviate from modelling the ECS diffusion with a simple isotropic Gaussian and consider more complex geometric representations. Another improvement would be to consider exchanges between the neurites and the ECS (Jelescu et al., 2021; Olesen et al., 2021).

In this method, we require to have a signal with large q𝑞qitalic_q-values to extract summary statistics using RTOP. This constraint limits the number of possible applications, as many dMRI datasets do not contain such high q𝑞qitalic_q-values. A solution proposed by Golkov et al. (2016) is to rely on deep learning to learn a mapping between a limited number of DWIs and some microstructure scalars, assuming that all the necessary information is contained in the low-dimensional acquisition. Following this q𝑞qitalic_q-space deep learning method, an improvement of the proposed method could be to learn the summary statistics from a dataset with less q𝑞qitalic_q-shells using deep learning, and then apply our likelihood-free inference method to solve the inverse problem.

Finally, we could leverage the modularity of the probabilistic framework and apply our methodology to other kinds of models in medical imaging. This could be done by simply re-defining the forward model and the summary statistics defined in Section 4.1. Such flexibility confirms the generality of our approach and the potential impact that it might have in the medical imaging field.

7 Conclusion

Quantifying grey matter tissue composition is challenging. In this work, we have presented a methodology to estimate the parameters of a model that best fit an observed data point, and also their full posterior distribution. This rich description provides many useful tools, such as assessing the quality of the parameter estimation or characterizing regions in the parameter space where it is harder to invert the model. The inclusion of such “quality certificate” accompanying our parameter estimation is very useful in practice and allows one to apply the pipeline on any kind of database and know to which degree one can trust the results. Moreover, our proposal alleviates limitations from current methods in the literature by not requiring physiologically unrealistic constraints on the parameters and avoiding indeterminacies when estimating them.

To conclude, we believe that our approach based on Bayesian inference with modern tools from neural networks is a promising one that can easily be applied to other applications in the medical imaging field: one only needs to define a sufficiently rich model describing a certain phenomenon of interest and the LFI pipeline will manage to invert it and provide a related posterior distribution. We expect, therefore, that other researchers will find this contribution valuable for their own applications and see such probabilistic approach more often used in the literature.


Acknowledgments

Experiments on diffusion MRI data were made possible thanks to DiPy (Garyfallidis et al., 2014), as well as the scientific Python ecosystem: Python (Van Rossum and Drake, 2009), Matplotlib (Hunter, 2007), Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020), Mayavi (Ramachandran and Varoquaux, 2011), SBI (Tejero-Cantero et al., 2020) and PyTorch (Paszke et al., 2019).

This work was supported by grants ERC-StG NeuroLang ID:757672 and ANR-NSF NeuroRef to DW and the ANR BrAIN (ANR-20-CHIA-0016) grant to AG.


Ethical Standards

The work follows appropriate ethical standards in conducting research and writing the manuscript, following all applicable laws and regulations regarding treatment of animals or human subjects.


Conflicts of Interest

We declare we don’t have conflicts of interest.

References

  • Allman et al. (2010) John M. Allman, Nicole A. Tetreault, Atiya Y. Hakeem, Kebreten F. Manaye, Katerina Semendeferi, Joseph M. Erwin, Soyoung Park, Virginie Goubert, and Patrick R. Hof. The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans. Brain Structure and Function, 214:495–517, June 2010.
  • Amunts et al. (1999) Katrin Amunts, Axel Schleicher, Uli Bürgel, Hartmut Mohlberg, Harry B.M. Uylings, and Karl Zilles. Broca’s region revisited: Cytoarchitecture and intersubject variability. Journal of Comparative Neurology, 412(2):319–341, 1999.
  • Balinov et al. (1993) Balin Balinov, Jönsson, Per Linse, and Olle Söderman. The NMR Self-Diffusion Method Applied to Restricted Diffusion. Simulation of Echo Attenuation form Molecules in Spheres and between Planes. Journal of Magnetic Resonance, Series A, 104(1):17–25, 1993.
  • Brodmann (1909) Korbinian Brodmann. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.
  • Cranmer et al. (2020) Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.
  • Douaud et al. (2013) Gwenaëlle Douaud, Ricarda A. L. Menke, Achim Gass, Andreas U. Monsch, Anil Rao, Brandon Whitcher, Giovanna Zamboni, Paul M. Matthews, Marc Sollberger, and Stephen Smith. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to alzheimer’s disease. Journal of Neuroscience, 33(5):2147–2155, 2013. ISSN 0270-6474. doi: 10.1523/JNEUROSCI.4437-12.2013. URL https://www.jneurosci.org/content/33/5/2147.
  • Durkan et al. (2020) Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. nflows: normalizing flows in PyTorch. November 2020. doi: 10.5281/zenodo.4296287.
  • Fick et al. (2019) Rutger H. J. Fick, Demian Wassermann, and Rachid Deriche. The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy. Frontiers in Neuroinformatics, 13:64, October 2019.
  • Fick et al. (2016) Rutger H.J. Fick, Demian Wassermann, Emmanuel Caruyer, and Rachid Deriche. MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage, 134:365–385, July 2016.
  • Garyfallidis et al. (2014) Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan Van Der Walt, Maxime Descoteaux, and Ian Nimmo-Smith. Dipy, a library for the analysis of diffusion mri data. Frontiers in Neuroinformatics, 8:8, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2014.00008. URL https://www.frontiersin.org/article/10.3389/fninf.2014.00008.
  • Gelman et al. (2013) A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data Analysis, Third Edition. Chapman & Hall/CRC Texts in Statistical Science. Taylor & Francis, 2013. ISBN 9781439840955. URL https://books.google.fr/books?id=ZXL6AQAAQBAJ.
  • Germain et al. (2015) Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for distribution estimation. In Proceedings of the 32nd International Conference on Machine Learning, volume 37, pages 881–889. PMLR, 2015.
  • Geyer et al. (1999) Stefan Geyer, Axel Schleicher, and Karl Zilles. Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex. NeuroImage, 10(1):63–83, July 1999. ISSN 10538119.
  • Golkov et al. (2016) Vladimir Golkov, Alexey Dosovitskiy, Jonathan I Sperl, Marion I Menzel, Michael Czisch, Philipp Sämann, Thomas Brox, and Daniel Cremers. Q-space deep learning: twelve-fold shorter and model-free diffusion mri scans. IEEE transactions on medical imaging, 35(5):1344–1351, 2016.
  • Gonçalves et al. (2020) Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, David S Greenberg, and Jakob H Macke. Training deep neural density estimators to identify mechanistic models of neural dynamics. eLife, 9, September 2020.
  • Goodfellow et al. (2016) Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deeplearningbook.org.
  • Goodfellow et al. (2014) Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.
  • Greenberg et al. (2019) David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for likelihood-free inference. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 2404–2414. PMLR, 2019.
  • Harris et al. (2020) Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2. URL https://doi.org/10.1038/s41586-020-2649-2.
  • Hunter (2007) John D Hunter. Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):90–95, 2007.
  • Jelescu and Budde (2017) Ileana O. Jelescu and Matthew D. Budde. Design and validation of diffusion MRI models of white matter. Frontiers in Physics, 5, November 2017. doi: 10.3389/fphy.2017.00061. URL https://doi.org/10.3389/fphy.2017.00061.
  • Jelescu et al. (2016) Ileana O. Jelescu, Jelle Veraart, Els Fieremans, and Dmitry S. Novikov. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue: Degeneracy in Model Parameter Estimation of Diffusion in Neural Tissue. NMR in Biomedicine, 29(1):33–47, January 2016.
  • Jelescu et al. (2021) Ileana O. Jelescu, Alexandre de Skowronski, Marco Palombo, and Dmitry S. Novikov. Neurite exchange imaging (nexi): A minimal model of diffusion in gray matter with inter-compartment water exchange, 2021.
  • Kingma and Ba (2014) Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference on Learning Representations, 12 2014.
  • Kingma and Welling (2019) Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4):307–392, 2019. ISSN 1935-8237. doi: 10.1561/2200000056. URL http://dx.doi.org/10.1561/2200000056.
  • Li et al. (2016) Hua Li, Xiaoyu Jiang, Jingping Xie, John C. Gore, and Junzhong Xu. Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI. Magnetic Resonance in Medicine, 77(6):2239–2249, June 2016. doi: 10.1002/mrm.26309. URL https://doi.org/10.1002/mrm.26309.
  • Menon et al. (2020) Vinod Menon, Guillermo Gallardo, Mark A Pinsk, Van-Dang Nguyen, Jing-Rebecca Li, Weidong Cai, and Demian Wassermann. Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. elife, 9:e53470, 2020.
  • Mitra et al. (1995) P. P. Mitra, L. L. Latour, R. L. Kleinberg, and C. H. Sotak. Pulsed-field-gradient NMR measurements of restricted diffusion and the return-to-origin probability. Journal of Magnetic Resonance, 114:47–58, 1995.
  • Murday and Cotts (1968) J. S. Murday and R. M. Cotts. Self‐diffusion coefficient of liquid lithium. The Journal of Chemical Physics, 48(11):4938–4945, 1968. doi: 10.1063/1.1668160.
  • Novikov et al. (2018a) Dmitry S. Novikov, Els Fieremans, Sune N. Jespersen, and Valerij G. Kiselev. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation: Brain microstructure with dMRI: Theory and parameter estimation. NMR in Biomedicine, page e3998, October 2018a. ISSN 09523480.
  • Novikov et al. (2018b) Dmitry S. Novikov, Jelle Veraart, Ileana O. Jelescu, and Els Fieremans. Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. NeuroImage, 174:518–538, July 2018b.
  • Olesen et al. (2021) Jonas L Olesen, Leif Østergaard, Noam Shemesh, and Sune N Jespersen. Diffusion time dependence, power-law scaling, and exchange in gray matter. arXiv preprint arXiv:2108.09983, 2021.
  • Palombo et al. (2021) M Palombo, D Alexander, and H Zhang. Large-scale analysis of brain cell morphometry informs microstructure modelling of gray matter., May 2021. URL https://www.ismrm.org/21m/.
  • Palombo et al. (2020) Marco Palombo, Andrada Ianus, Michele Guerreri, Daniel Nunes, Daniel C. Alexander, Noam Shemesh, and Hui Zhang. SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage, 215:116835, 2020.
  • Pandya et al. (2015) Deepak Pandya, Michael Petrides, and Patsy Benny Cipolloni. Cerebral cortex: architecture, connections, and the dual origin concept. Oxford University Press, 2015.
  • Papamakarios and Murray (2016) George Papamakarios and Iain Murray. Fast ϵitalic-ϵ\epsilonitalic_ϵ-free inference of simulation models with bayesian conditional density estimation. In Advances in Neural Information Processing Systems, volume 29, pages 1028–1036. Curran Associates, Inc., 2016.
  • Papamakarios et al. (2019) George Papamakarios, Eric T. Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. ArXiv, abs/1912.02762, 2019.
  • Paszke et al. (2019) Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems (NeurIPS), page 12, Vancouver, BC, Canada, 2019.
  • Ramachandran and Varoquaux (2011) P. Ramachandran and G. Varoquaux. Mayavi: 3D Visualization of Scientific Data. Computing in Science & Engineering, 13(2):40–51, 2011. ISSN 1521-9615.
  • Setsompop et al. (2013) K. Setsompop, R. Kimmlingen, E. Eberlein, T. Witzel, J. Cohen-Adad, J.A. McNab, B. Keil, M.D. Tisdall, P. Hoecht, P. Dietz, S.F. Cauley, V. Tountcheva, V. Matschl, V.H. Lenz, K. Heberlein, A. Potthast, H. Thein, J. Van Horn, A. Toga, F. Schmitt, D. Lehne, B.R. Rosen, V. Wedeen, and L.L. Wald. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. NeuroImage, 80:220 – 233, 2013.
  • Shapson-Coe et al. (2021) Alexander Shapson-Coe, Michał Januszewski, Daniel R. Berger, Art Pope, Yuelong Wu, Tim Blakely, Richard L. Schalek, Peter Li, Shuohong Wang, Jeremy Maitin-Shepard, Neha Karlupia, Sven Dorkenwald, Evelina Sjostedt, Laramie Leavitt, Dongil Lee, Luke Bailey, Angerica Fitzmaurice, Rohin Kar, Benjamin Field, Hank Wu, Julian Wagner-Carena, David Aley, Joanna Lau, Zudi Lin, Donglai Wei, Hanspeter Pfister, Adi Peleg, Viren Jain, and Jeff W. Lichtman. A connectomic study of a petascale fragment of human cerebral cortex. bioRxiv, 2021. doi: 10.1101/2021.05.29.446289. URL https://www.biorxiv.org/content/early/2021/05/30/2021.05.29.446289.
  • Sisson (2018) Scott A. Sisson. Handbook of Approximate Bayesian Computation. Chapman and Hall/CRC, September 2018.
  • Stuart (2010) A. M. Stuart. Inverse problems: A bayesian perspective. Acta Numerica, 19:451–559, 2010. doi: 10.1017/S0962492910000061.
  • Tax et al. (2020) Chantal M.W. Tax, Filip Szczepankiewicz, Markus Nilsson, and Derek K. Jones. The dot-compartment revealed? diffusion mri with ultra-strong gradients and spherical tensor encoding in the living human brain. NeuroImage, 210:116534, 2020.
  • Tejero-Cantero et al. (2020) Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J. Gonçalves, David S. Greenberg, and Jakob H. Macke. sbi: A toolkit for simulation-based inference. Journal of Open Source Software, 5(52):2505, 2020. doi: 10.21105/joss.02505.
  • Van Rossum and Drake (2009) Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN 1441412697.
  • Veraart et al. (2019) Jelle Veraart, Els Fieremans, and Dmitry S. Novikov. On the scaling behavior of water diffusion in human brain white matter. NeuroImage, 185:379–387, January 2019.
  • Veraart et al. (2020) Jelle Veraart, Daniel Nunes, Umesh Rudrapatna, Els Fieremans, Derek K Jones, Dmitry S Novikov, and Noam Shemesh. Noninvasive quantification of axon radii using diffusion MRI. eLife, 9, February 2020.
  • Vincent et al. (2021) Mélissa Vincent, Mylène Gaudin, Covadonga Lucas-Torres, Alan Wong, Carole Escartin, and Julien Valette. Characterizing extracellular diffusion properties using diffusion-weighted mrs of sucrose injected in mouse brain. NMR in Biomedicine, 34(4):e4478, 2021. doi: https://doi.org/10.1002/nbm.4478. URL https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/nbm.4478.
  • Virtanen et al. (2020) Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.
  • Zhang et al. (2012) Hui Zhang, Torben Schneider, Claudia A. Wheeler-Kingshott, and Daniel C. Alexander. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 61(4):1000 – 1016, 2012.
  • Zilles (2018) Karl Zilles. Brodmann: a pioneer of human brain mapping—his impact on concepts of cortical organization. Brain, 141(11):3262–3278, October 2018. doi: 10.1093/brain/awy273. URL https://doi.org/10.1093/brain/awy273.

Appendix A.

In this appendix we present additional experimental results of brain white matter microstructure estimations using the proposed method.Figure 9 A presents a comparison of the mean estimations of white matter and gray matter parameters among all HCP MGH subjects, keeping only trusted voxels. We can observe a lower proportion of somas in white matter (fs,WM<fs,GMsubscript𝑓𝑠WMsubscript𝑓𝑠GMf_{s,\text{WM}}<f_{s,\text{GM}}italic_f start_POSTSUBSCRIPT italic_s , WM end_POSTSUBSCRIPT < italic_f start_POSTSUBSCRIPT italic_s , GM end_POSTSUBSCRIPT) along with smaller soma size compared with grey matter (Cs,WM<Cs,GMsubscript𝐶𝑠WMsubscript𝐶𝑠GMC_{s,\text{WM}}<C_{s,\text{GM}}italic_C start_POSTSUBSCRIPT italic_s , WM end_POSTSUBSCRIPT < italic_C start_POSTSUBSCRIPT italic_s , GM end_POSTSUBSCRIPT). This weak presence of small somas in white matter is in accordance with histology. These results also indicate a more anisotropic distribution of axons is white matter than neurites in grey matter (p2,WM>p2,GMsubscript𝑝2WMsubscript𝑝2GMp_{2,\text{WM}}>p_{2,\text{GM}}italic_p start_POSTSUBSCRIPT 2 , WM end_POSTSUBSCRIPT > italic_p start_POSTSUBSCRIPT 2 , GM end_POSTSUBSCRIPT). Obtained p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT values are coherent to the ones obtained with the LEMONADE framework (Novikov et al., 2018b). Figure 9 B presents the mean p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT values in white matter averaged over all subjects, keeping only trusted estimations. The center of brain white matter appears more anisotropic than at the frontier with grey matter.In this paper we approximate the ECS with an isotropic diffusion. Models specific to brain white matter, such as the SM, usually represent ECS diffusivity as a non-isotropic tensor (Novikov et al., 2018a). Results obtained from this model should then be taken with caution, because this model does not reflect white matter tissue properly.

Refer to caption
Figure 9: Mean estimation over HCP MGH subjects of brain white matter microstructure parameters using LFI methods on a three-compartment model. A. Higher p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT values are observed in brain white matter compared to gray matter, indicating a more anisotropic axon distribution. Soma proportion is also reduced compared to gray matter estimations, along with smaller soma size. These estimations, although encouraging, should be taken with caution, because the ECS model used here is not suited for white matter tissue. B. p2subscript𝑝2p_{2}italic_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT estimations in brain white matter, 0 indicating an isotropic distribution of axons, and 1 an anisotropic distribution (i.e. perfectly aligned fibers).