Integrated Construction of Multimodal Atlases with Structural Connectomes in the Space of Riemannian Metrics

Kristen M. Campbell1, Haocheng Dai1, Zhe Su2, Martin Bauer3, P. Thomas Fletcher4, Sarang C. Joshi1
1: University of Utah, Salt Lake City, 2: University of California Los Angeles, 3: Florida State University, Tallahassee, 4: University of Virginia, Charlottesville
IPMI 2021 special issue
Publication date: 2022/06/16
PDF · arXiv · Code · Video

Abstract

The structural network of the brain, or structural connectome, can be represented by fiber bundles generated by a variety of tractography methods. While such methods give qualitative insights into brain structure, there is controversy over whether they can provide quantitative information, especially at the population level. In order to enable population-level statistical analysis of the structural connectome, we propose representing a connectome as a Riemannian metric, which is a point on an infinite-dimensional manifold. We equip this manifold with the Ebin metric, a natural metric structure for this space, to get a Riemannian manifold along with its associated geometric properties. We then use this Riemannian framework to apply object-oriented statistical analysis to define an atlas as the Fréchet mean of a population of Riemannian metrics. This formulation ties into the existing framework for diffeomorphic construction of image atlases, allowing us to construct a multimodal atlas by simultaneously integrating complementary white matter structure details from DWMRI and cortical details from T1-weighted MRI. We illustrate our framework with 2D data examples of connectome registration and atlas formation. Finally, we build an example 3D multimodal atlas using T1 images and connectomes derived from diffusion tensors estimated from a subset of subjects from the Human Connectome Project.

Keywords

Riemannian metrics · Multimodal atlas · Structural connectome · metric matching · white matter atlas · diffusion atlas · diffeomorphic metric registration

Bibtex @article{melba:2022:016:campbell, title = "Integrated Construction of Multimodal Atlases with Structural Connectomes in the Space of Riemannian Metrics", author = "Campbell, Kristen M. and Dai, Haocheng and Su, Zhe and Bauer, Martin and Fletcher, P. Thomas and Joshi, Sarang C.", journal = "Machine Learning for Biomedical Imaging", volume = "1", issue = "IPMI 2021 special issue", year = "2022", pages = "1--25", issn = "2766-905X", url = "https://melba-journal.org/2022:016" }
RISTY - JOUR AU - Campbell, Kristen M. AU - Dai, Haocheng AU - Su, Zhe AU - Bauer, Martin AU - Fletcher, P. Thomas AU - Joshi, Sarang C. PY - 2022 TI - Integrated Construction of Multimodal Atlases with Structural Connectomes in the Space of Riemannian Metrics T2 - Machine Learning for Biomedical Imaging VL - 1 IS - IPMI 2021 special issue SP - 1 EP - 25 SN - 2766-905X UR - https://melba-journal.org/2022:016 ER -

2022:016 cover


1 Introduction

Tractography is one way to represent a structural connectome, or structural network of a brain, which consists of brain regions that are physically connected by a network of neuronal bundles that make up the white matter of that brain. It is not currently possible to image individual neurons in a living brain non-invasively. Instead, we can use diffusion-weighted magnetic resonance images (DWMRI) to infer the pathways of coherent bundles of neurons that cross through other bundles in white matter and connect with end points in gray matter. There are a variety of tractography algorithms used to infer these white matter pathways, ranging from local methods that integrate local orientation information to form individual streamlines to global methods that estimate all fiber tracts simultaneously. Deterministic (basser2000vivo) and probabilistic (behrens2003characterization) streamline integration methods are easy to compute, but they suffer from accumulation of local orientation errors leading to tract reconstructions biased toward shorter and straighter tracts. Conversely, global estimation methods (jbabdi2007bayesian; christiaens2015global) incorporate prior anatomical knowledge while ensuring that tractography is consistent with the underlying data. However, these global methods have convergence issues, sensitivity to initialization and priors, and a tendency to have estimated tracts end in the middle of white matter regions. Biases in tract reconstruction introduced by either local or global methods affect the accuracy of quantitative measures such as track density and connection strength.

Geodesic tractography algorithms, first introduced by o2002new, use a combination of local and global information to determine tracts by formulating white matter pathways as geodesic curves under a Riemannian metric derived from the DWMRI data. In the original work, o2002new use the inverse diffusion tensor as the Riemannian metric. As described by lenglet2004, the inverse diffusion tensor metric has a connection to Brownian motion through the Laplace Beltrami operator on the resulting Riemannian manifold. The inverse tensor metric favors paths that follow the principal eigenvector of the diffusion tensor, as this is the locally optimal direction to move. However, geodesic curves for this metric do not consistently follow the principal eigenvector of the diffusion tensor, and tend to be overly straight in regions where the white matter fibers are bending, losing association with the underlying anatomy in these areas. This problem has been addressed by several strategies to improve the adherence of geodesics to the white matter geometry, including “sharpening” the inverse diffusion tensor (fletcher2007), using the adjugate of the diffusion tensor (fuster2016), and using a conformal metric (hao2014improved). One advantage to the geodesic tractography formulation is that we can do uncertainty and confidence interval analysis of the tractographies following (sengers2021).

These tractography techniques help to give insight into the structure of a single brain, but it remains an open challenge to quantitatively measure how these structural connectome pathways vary in a population. To do such a population analysis, we first need a common frame of reference, or atlas space, where spatial differences between subjects’ white matter can be measured.

Initially, white matter atlases were constructed by aligning DWMRI to an anatomical template, then transforming and averaging the associated tensor field or distribution function field. For example, mori2008dti construct a diffusion tensor imaging (DTI) atlas by registering the DWMRI of multiple subjects to a standardized anatomical template. They build the DTI atlas by transforming the diffusion tensors for each subject (alexander2001spatial) and then taking the Euclidean average of the transformed diffusion tensors at each voxel. This approach does not use the white matter directionality information encoded in the diffusion images during the registration. It also suffers from the fact that the Euclidean average of diffusion tensors does not take into account the directionality and tends to be fatter (i.e., less anisotropic) than the input tensors (fletcher2007riemannian). Another approach by yeh2018population is to register q𝑞qitalic_q-space diffusion images into an anatomical template and estimate the spin distribution function (SDF) at each voxel in the template. Then the SDFs are averaged on a per-voxel basis. While this method does take into account the directionality of the white matter in a local neighborhood, it does not take into account consistency of long-range white matter connections. These methods both rely on low-accuracy registration to the anatomical template image, because at the time high-accuracy diffeomorphic registrations could not be used as they did not preserve the continuity of pathway directions across voxels (yeh2018population).

The field then focused on constructing atlases directly from tractography. These methods are adept at finding well-known tracts, but they generally require significant expert curation to remove the many false-positive fibers and tracts they create (zhang2018anatomically). Additionally, variation of population-level tractography characteristics like fiber density of tracts is as likely to be reflective of the tractography process chosen as it is of the underlying physical white matter. These and other biases in tractography quantification are well-characterized by jeurissen2019diffusion.

In order to get a more complete anatomical atlas,  toga2006towards argue for the integrated derivation of multimodal atlases using techniques such as spatial normalization to produce more comprehensive atlases. Some attempts have been made to create a multimodal population atlas from T1 and DWMRI images. gupta2016framework rigidly register the DWMRI into the same space as the T1 template image and then apply the same deformations used to create the T1 template to the DWMRI before estimating the diffusion tensors from the transformed DWMRI. This approach puts the DWMRI and T1 images in the same space, but does not use the white matter structure to inform the creation of the T1 atlas. Other previous work on multichannel registration of diffusion and T1 MRI include avants2007multivariate, who use a Euclidean image match metric on the diffusion tensors, and uus2020multi, who use local angular correlation on the orientation distribution functions (ODFs). Like the white matter-only atlases approaches discussed above, these methods only take local information into consideration and thus do not preserve the consistency of long-range white matter connections. They do demonstrate that registration quality is improved over single channel registration when complementary channels are combined in the objective function.

We are motivated to find an approach that can preserve the best aspects of these atlas and tractography methods, while mitigating their weaknesses. Specifically, we want to create a white matter pathway atlas that preserves local orientations and other anatomical information while maintaining the continuity and integrity of long-range connections. We then want a method to bring subjects into that atlas space to enable statistical quantification of both structural connectivity and geometric variability of white matter structure across a population.

To meet these goals, we describe the metric matching framework presented by campbell2021structural in more detail and then extend it by combining diffeomorphic metric matching with diffeomorphic image matching to enable the construction of both a multimodal white and gray matter atlas simultaneously for the first time. This formulation preserves geodesics transformed by diffeomorphisms, which meets our objective to use local diffusion data and maintain the integrity of long-range connectomics as inferred by tractography (cheng2015tractography). We demonstrate that long-range connections are preserved by performing geodesic tractography on the resulting atlas.

1.1 Contributions of the Article

In this paper, we contribute a mathematical framework for diffeomorphic metric matching that is compatible with existing image matching frameworks to enable the creation of integrated multimodal atlases. We start by using the concept from geodesic tractography to represent connectome fibers as geodesics of a metric, that is, each brain’s white matter structure is represented as a point on the infinite-dimensional manifold of Riemannian metrics. This manifold is then equipped with the diffeomorphism-invariant Ebin metric to compute distances and geodesics between connectomes. We explain how this Riemannian manifold is the foundation for the algorithm for diffeomorphic metric registration of structural connectomes and the statistical groupwise metric atlas estimation algorithm. We then extend this model by including an image matching term in those algorithms. Finally, we simultaneously estimate an integrated multimodal white matter pathway and T1 MRI-based image atlas for the first time. This article is an extended version of the Information Processing in Medical Imaging (IPMI) conference paper (campbell2021structural), where we expand the results of the conference proceedings in several major directions. Most importantly, the joint white matter pathway and T1 MRI-based image atlas model is newly introduced and, in contrast to campbell2021structural which only contained 2D examples, we now present 3D atlas construction examples.

2 Structural Connectomes as Riemannian Metrics

In the white matter of the brain, the diffusion of water is restricted perpendicular to the direction of the axons. Diffusion-weighted MRI measures the microscopic diffusion of water in multiple directions at every voxel in a 3D volume. Thus, the directionality of white matter in the brain can be locally inferred. Traditionally, global connections of the white matter have been estimated by a procedure called tractography, which numerically computes integral curves of the vector field formed by the most likely direction of fiber tracts at each point. DTI models anisotropic water diffusion with a 3x3 symmetric positive definite tensor, D(x)𝐷𝑥D(x)italic_D ( italic_x ), at each voxel, xM𝑥𝑀x\in Mitalic_x ∈ italic_M, where the manifold M3𝑀superscript3M\subset\mathbb{R}^{3}italic_M ⊂ blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT is the image domain. The principal eigenvector of D(x)𝐷𝑥D(x)italic_D ( italic_x ) is aligned with the direction of the strongest diffusion.

Riemannian metrics that represent connectomics of a subject have been developed in diffusion imaging by  o2002new and include the inverse-tensor metric g~=D(x)1~𝑔𝐷superscript𝑥1\tilde{g}=D(x)^{-1}over~ start_ARG italic_g end_ARG = italic_D ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT. However, the geodesics associated with the inverse-tensor metric tend to deviate from the principal eigenvector directions and take straighter paths through areas of high curvature.

In this work we build on the algorithm developed by hao2014improved, which estimates a spatially-varying function, α(x):M:𝛼𝑥𝑀\alpha(x):M\to\mathbb{R}italic_α ( italic_x ) : italic_M → blackboard_R, that modulates the inverse-tensor metric to create a locally-adaptive Riemannian metric, gα=eα(x)g~subscript𝑔𝛼superscript𝑒𝛼𝑥~𝑔g_{\alpha}=e^{\alpha(x)}\tilde{g}italic_g start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT = italic_e start_POSTSUPERSCRIPT italic_α ( italic_x ) end_POSTSUPERSCRIPT over~ start_ARG italic_g end_ARG. We briefly describe the method here for completeness but refer the reader to hao2014improved for details. This adaptive connectome metric, gαsubscript𝑔𝛼g_{\alpha}italic_g start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT, is conformally equivalent to the inverse-tensor metric and is better at capturing the global connectomics, particularly through regions of high curvature. Figure 1 shows how well the geodesics of each metric match the integral curve of the vector field. The connectome metric geodesics are very closely aligned with the integral curves.

The geodesic between two end-points, p,qM𝑝𝑞𝑀p,q\in Mitalic_p , italic_q ∈ italic_M, associated with the inverse-tensor metric, g~(x)=D(x)1~𝑔𝑥𝐷superscript𝑥1\tilde{g}(x)=D(x)^{-1}over~ start_ARG italic_g end_ARG ( italic_x ) = italic_D ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, minimizes the energy functional, E~~𝐸\tilde{E}over~ start_ARG italic_E end_ARG, while the geodesic associated with the connectome metric, gα(x)=eα(x)D(x)1subscript𝑔𝛼𝑥superscript𝑒𝛼𝑥𝐷superscript𝑥1g_{\alpha}(x)=e^{\alpha(x)}D(x)^{-1}italic_g start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( italic_x ) = italic_e start_POSTSUPERSCRIPT italic_α ( italic_x ) end_POSTSUPERSCRIPT italic_D ( italic_x ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT, minimizes the energy functional, Eαsubscript𝐸𝛼E_{\alpha}italic_E start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT.

E~(γ)=01T(t),T(t)g~𝑑t,Eα(γ)=01eα(x)T(t),T(t)g~𝑑t,~𝐸𝛾superscriptsubscript01subscript𝑇𝑡𝑇𝑡~𝑔differential-d𝑡subscript𝐸𝛼𝛾superscriptsubscript01superscript𝑒𝛼𝑥subscript𝑇𝑡𝑇𝑡~𝑔differential-d𝑡\begin{aligned} \tilde{E}(\gamma)=\int_{0}^{1}\langle T(t),T(t)\rangle_{\tilde% {g}}dt,\end{aligned}\qquad\begin{aligned} E_{\alpha}(\gamma)=\int_{0}^{1}e^{% \alpha(x)}\langle T(t),T(t)\rangle_{\tilde{g}}dt,\end{aligned}start_ROW start_CELL over~ start_ARG italic_E end_ARG ( italic_γ ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ⟨ italic_T ( italic_t ) , italic_T ( italic_t ) ⟩ start_POSTSUBSCRIPT over~ start_ARG italic_g end_ARG end_POSTSUBSCRIPT italic_d italic_t , end_CELL end_ROW start_ROW start_CELL italic_E start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ( italic_γ ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_α ( italic_x ) end_POSTSUPERSCRIPT ⟨ italic_T ( italic_t ) , italic_T ( italic_t ) ⟩ start_POSTSUBSCRIPT over~ start_ARG italic_g end_ARG end_POSTSUBSCRIPT italic_d italic_t , end_CELL end_ROW(1)

where γ:[0,1]M:𝛾01𝑀\gamma:[0,1]\to Mitalic_γ : [ 0 , 1 ] → italic_M, γ(0)=p𝛾0𝑝\gamma(0)=pitalic_γ ( 0 ) = italic_p, γ(1)=q𝛾1𝑞\gamma(1)=qitalic_γ ( 1 ) = italic_q, T=dγdt𝑇𝑑𝛾𝑑𝑡T=\frac{d\gamma}{dt}italic_T = divide start_ARG italic_d italic_γ end_ARG start_ARG italic_d italic_t end_ARG.

Analyzing the variation of Eαsubscript𝐸𝛼E_{\alpha}italic_E start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT leads to the geodesic equation, gradα=2TTgrad𝛼2subscript𝑇𝑇\mathrm{grad}\,\alpha=2\nabla_{T}Troman_grad italic_α = 2 ∇ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_T, where the Riemannian gradient of α𝛼\alphaitalic_α, gradα=g~1(αx1,αx2,,αxn)grad𝛼superscript~𝑔1𝛼superscript𝑥1𝛼superscript𝑥2𝛼superscript𝑥𝑛\mathrm{grad}\,\alpha=\tilde{g}^{-1}\bigl{(}\frac{\partial\alpha}{\partial x^{% 1}},\frac{\partial\alpha}{\partial x^{2}},\cdots,\frac{\partial\alpha}{% \partial x^{n}}\bigr{)}roman_grad italic_α = over~ start_ARG italic_g end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( divide start_ARG ∂ italic_α end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT end_ARG , divide start_ARG ∂ italic_α end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , ⋯ , divide start_ARG ∂ italic_α end_ARG start_ARG ∂ italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_ARG ), and TTsubscript𝑇𝑇\nabla_{T}T∇ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT italic_T is the covariant derivative of T𝑇Titalic_T along its integral curve.

To enforce the desired condition where the tangent vectors, T𝑇Titalic_T, of the geodesic match the vector field, V𝑉Vitalic_V, of the unit principal eigenvectors of D(x)𝐷𝑥D(x)italic_D ( italic_x ), we minimize the functional, F(α)=Mgradα2VVg~2𝑑x𝐹𝛼subscript𝑀subscriptsuperscriptnormgrad𝛼2subscript𝑉𝑉2~𝑔differential-d𝑥F(\alpha)=\int_{M}||\mathrm{grad}\,\alpha-2\nabla_{V}V||^{2}_{\tilde{g}}dxitalic_F ( italic_α ) = ∫ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT | | roman_grad italic_α - 2 ∇ start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT italic_V | | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT over~ start_ARG italic_g end_ARG end_POSTSUBSCRIPT italic_d italic_x. The equation for α𝛼\alphaitalic_α that minimizes F(α)𝐹𝛼F(\alpha)italic_F ( italic_α ) is

Δg~α=2divg~(VV),subscriptΔ~𝑔𝛼2subscriptdiv~𝑔subscript𝑉𝑉\Delta_{\tilde{g}}\alpha=2\,\mathrm{div}_{\tilde{g}}(\nabla_{V}V),roman_Δ start_POSTSUBSCRIPT over~ start_ARG italic_g end_ARG end_POSTSUBSCRIPT italic_α = 2 roman_div start_POSTSUBSCRIPT over~ start_ARG italic_g end_ARG end_POSTSUBSCRIPT ( ∇ start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT italic_V ) ,(2)

where divdiv\mathrm{div}roman_div and ΔΔ\Deltaroman_Δ are the Riemannian divergence and Laplace-Beltrami operator. We discretize the Poisson equation in Equation (2) using a second-order finite difference scheme that satisfies both the Neumann boundary conditions αn=gradα,n=2VV,n𝛼𝑛grad𝛼𝑛2subscript𝑉𝑉𝑛\frac{\partial\alpha}{\partial\overrightarrow{n}}=\langle\mathrm{grad}\,\alpha% ,\overrightarrow{n}\rangle=\langle 2\nabla_{V}V,\overrightarrow{n}\rangledivide start_ARG ∂ italic_α end_ARG start_ARG ∂ over→ start_ARG italic_n end_ARG end_ARG = ⟨ roman_grad italic_α , over→ start_ARG italic_n end_ARG ⟩ = ⟨ 2 ∇ start_POSTSUBSCRIPT italic_V end_POSTSUBSCRIPT italic_V , over→ start_ARG italic_n end_ARG ⟩ and the governing equation on the boundary. We then solve for α𝛼\alphaitalic_α.

Note that we can use this method to match the geodesics of the connectome metric to other vector fields defining the tractogram, e.g., from higher-order diffusion models that can represent multiple fiber crossings in a voxel. In particular, for tractography based on fiber orientation distributions (FODs), we can use the techniques presented in nie2019topographic to generate the vector field V𝑉Vitalic_V.

Refer to caption
Figure 1: A geodesic of the inverse-tensor metric (blue) and adaptive metric (orange), along with an integral curve (black) associated with the principal eigenvectors for a synthetic tensor field (left) and a subject’s connectome metric from the Human Connectome Project (center). Right shows a detailed view of the metric in the corpus callosum.

The fundamental result of the purposed method is the fact that a metric tensor field is estimated such that a given vector field is a geodesic vector field of the estimated Riemannian metric. It is in this sense that the estimated metric field captures the geometry of the white matter as inferred by tractoraphy. This metric field that captures the tractography will be the primary driving force for the registration algorithms. We will now develop registration and atlas construction algorithms that leverage the rich geometric structure of Manifold of all Riemannian Metrics.

3 The Geometry of the Manifold of all Riemannian Metrics

Once we have estimated a Riemannian metric for a human connectome, it is a point in the infinite-dimensional manifold of all Riemannian metrics, Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ), where M𝑀Mitalic_M is the domain of the image. We will equip this space with a diffeomorphism-invariant Riemannian metric, called the Ebin or DeWitt metric (Ebin1970a; DeWitt67). The invariance of the infinite-dimensional metric under the group of diffeomorphisms Diff(M)Diff𝑀\operatorname{Diff}(M)roman_Diff ( italic_M ) is a crucial property, as it guarantees the independence of an initial choice of coordinate system on the brain manifold. As we will base our statistical framework on this infinite-dimensional geometric structure, we will now give a detailed overview of its induced geometry on Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ).

Let M𝑀Mitalic_M be a smooth n𝑛nitalic_n-dimensional manifold; for our targeted applications n𝑛nitalic_n will be two or three. We denote by Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ) the space of all smooth Riemannian metrics on M𝑀Mitalic_M, i.e., each element g𝑔gitalic_g of the space Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ) is a symmetric, positive-definite (02)binomial020\choose 2( binomial start_ARG 0 end_ARG start_ARG 2 end_ARG ) tensor field on M𝑀Mitalic_M. It is convenient to think of the elements of M𝑀Mitalic_M as being point-wise positive-definite sections of the bundle of symmetric two-tensors S2TMsuperscript𝑆2superscript𝑇𝑀S^{2}T^{\ast}Mitalic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_M, i.e., smooth maps from M𝑀Mitalic_M with values in S+2TMsubscriptsuperscript𝑆2superscript𝑇𝑀S^{2}_{+}T^{\ast}Mitalic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT + end_POSTSUBSCRIPT italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_M. Thus, the space Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ) is an open subset of the linear space Γ(S2TM)Γsuperscript𝑆2superscript𝑇𝑀\Gamma(S^{2}T^{\ast}M)roman_Γ ( italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_M ) of all smooth symmetric (02)binomial020\choose 2( binomial start_ARG 0 end_ARG start_ARG 2 end_ARG ) tensor fields and hence itself a smooth Fréchet-manifold (Ebin1970a). Furthermore, let Diff(M)Diff𝑀\operatorname{Diff}(M)roman_Diff ( italic_M ) denote the infinite-dimensional Lie group of all smooth diffeomorphisms of the manifold M𝑀Mitalic_M. Elements of Diff(M)Diff𝑀\operatorname{Diff}(M)roman_Diff ( italic_M ) act as coordinate changes on the manifold M𝑀Mitalic_M. This group acts on the space of metrics via pullback

Met(M)×Diff(M)Met(M),(g,φ)φ*g=g(Tφ,Tφ).\displaystyle\operatorname{Met}(M)\times\operatorname{Diff}(M)\to\operatorname% {Met}(M),\qquad(g,\varphi)\mapsto\varphi^{*}g=g(T\varphi\cdot,T\varphi\cdot)\;.roman_Met ( italic_M ) × roman_Diff ( italic_M ) → roman_Met ( italic_M ) , ( italic_g , italic_φ ) ↦ italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g = italic_g ( italic_T italic_φ ⋅ , italic_T italic_φ ⋅ ) .(3)

In an analogous way we can define the pushforward action

Met(M)×Diff(M)Met(M),(g,φ)φ*g=(φ1)*gformulae-sequenceMet𝑀Diff𝑀Met𝑀maps-to𝑔𝜑subscript𝜑𝑔superscriptsuperscript𝜑1𝑔\displaystyle\operatorname{Met}(M)\times\operatorname{Diff}(M)\to\operatorname% {Met}(M),\qquad(g,\varphi)\mapsto\varphi_{*}g=\left(\varphi^{-1}\right)^{*}groman_Met ( italic_M ) × roman_Diff ( italic_M ) → roman_Met ( italic_M ) , ( italic_g , italic_φ ) ↦ italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g = ( italic_φ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g(4)

It is important to note that the geometries of the metrics g𝑔gitalic_g and φ*gsuperscript𝜑𝑔\varphi^{*}gitalic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g (φ*gsubscript𝜑𝑔\varphi_{*}gitalic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g resp.) are also related via φ𝜑\varphiitalic_φ. In particular, geodesics with respect to g𝑔gitalic_g are mapped via φ𝜑\varphiitalic_φ to geodesics with respect to φ*gsuperscript𝜑𝑔\varphi^{*}gitalic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g (via φ1superscript𝜑1\varphi^{-1}italic_φ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT for φ*gsubscript𝜑𝑔\varphi_{*}gitalic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g, resp.). On the infinite-dimensional manifold Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ), there exists a natural Riemannian metric: the reparameterization-invariant L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-metric. To define the metric, we need to first characterize the tangent space of the manifold of all metrics: Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ) is an open subset of Γ(S2TM)Γsuperscript𝑆2superscript𝑇𝑀\Gamma(S^{2}T^{\ast}M)roman_Γ ( italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_M ). Thus, every tangent vector hhitalic_h is a smooth bilinear form h:TM×MTM:subscript𝑀𝑇𝑀𝑇𝑀h:TM\times_{M}TM\to{\mathbb{R}}italic_h : italic_T italic_M × start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT italic_T italic_M → blackboard_R that can be equivalently interpreted as a map TMTM𝑇𝑀superscript𝑇𝑀TM\to T^{\ast}Mitalic_T italic_M → italic_T start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_M. The L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-metric is given by

GgE(h,k)=MTr(g1hg1k)vol(g),subscriptsuperscript𝐺𝐸𝑔𝑘subscript𝑀Trsuperscript𝑔1superscript𝑔1𝑘vol𝑔\displaystyle G^{E}_{g}(h,k)=\int_{M}\operatorname{Tr}\big{(}g^{-1}hg^{-1}k% \big{)}\operatorname{vol}(g),italic_G start_POSTSUPERSCRIPT italic_E end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_h , italic_k ) = ∫ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT roman_Tr ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_h italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_k ) roman_vol ( italic_g ) ,(5)

with gMet(M)𝑔Met𝑀g\in\operatorname{Met}(M)italic_g ∈ roman_Met ( italic_M ), h,kTgMet(M)𝑘subscript𝑇𝑔Met𝑀h,k\in T_{g}\operatorname{Met}(M)italic_h , italic_k ∈ italic_T start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT roman_Met ( italic_M ) and vol(g)vol𝑔\operatorname{vol}(g)roman_vol ( italic_g ) the induced volume density of the metric g𝑔gitalic_g. This metric, introduced in Ebin1970a, is also known as the Ebin metric. We call the metric natural as it requires no additional background structure and is consequently invariant under the pushforward and pullback actions of the diffeomorphism group, i.e.,

Gg(h,k)=Gφ*g(φ*h,φ*k)=Gφ*g(φ*h,φ*k)subscript𝐺𝑔𝑘subscript𝐺superscript𝜑𝑔superscript𝜑superscript𝜑𝑘subscript𝐺subscript𝜑𝑔subscript𝜑subscript𝜑𝑘G_{g}(h,k)=G_{\varphi^{*}g}(\varphi^{*}h,\varphi^{*}k)=G_{\varphi_{*}g}(% \varphi_{*}h,\varphi_{*}k)italic_G start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_h , italic_k ) = italic_G start_POSTSUBSCRIPT italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g end_POSTSUBSCRIPT ( italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_h , italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_k ) = italic_G start_POSTSUBSCRIPT italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_h , italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_k )(6)

for all φDiff(M)𝜑Diff𝑀\varphi\in\operatorname{Diff}(M)italic_φ ∈ roman_Diff ( italic_M ), gMet(M)𝑔Met𝑀g\in\operatorname{Met}(M)italic_g ∈ roman_Met ( italic_M ) and h,kTgMet(M)𝑘subscript𝑇𝑔Met𝑀h,k\in T_{g}\operatorname{Met}(M)italic_h , italic_k ∈ italic_T start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT roman_Met ( italic_M ). Note that the invariance of the metric follows directly from the substitution formula for multi-dimensional integrals.

The Ebin metric induces a particularly simple geometry on the space Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ), with explicit formulas for geodesics, geodesic distance and curvature. In the following theorem and corollary, we will present the most important of these formulas, which will be of importance for our proposed metric matching framework.

First we note that a metric gMet(M)𝑔Met𝑀g\in\operatorname{Met}(M)italic_g ∈ roman_Met ( italic_M ), in local coordinates, can be represented as a field of symmetric, positive-definite n×n𝑛𝑛n\times nitalic_n × italic_n matrices that vary smoothly over M𝑀Mitalic_M. Similarly, each tangent vector at g𝑔gitalic_g can be represented as a field of symmetric n×n𝑛𝑛n\times nitalic_n × italic_n matrices. By the results of freed1989basic; gil1991riemannian; clarke2013geodesics, one can reduce the investigations of the space of all Riemannian metrics to the study of the geometry of the finite-dimensional space of symmetric, positive-definite n×n𝑛𝑛n\times nitalic_n × italic_n matrices. The point-wise nature of the Ebin metric allows one to solve the geodesic initial and boundary value problem on Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ) for each xM𝑥𝑀x\in Mitalic_x ∈ italic_M separately. Consequently the formulas for geodesics, geodesic distance and curvature on the finite-dimensional matrix space can be translated directly to results for the Ebin metric on the infinite-dimensional space of Riemannian metrics.

Note that the space of Riemannian metrics, Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ) with the Ebin metric, is not metrically complete and not geodesically convex. Thus the minimal geodesic between two Riemannian metrics may not exist in Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ), but only in a larger space; the metric completion Met¯(M)¯Met𝑀\overline{\operatorname{Met}}(M)over¯ start_ARG roman_Met end_ARG ( italic_M ), which consists of all possibly degenerate Riemannian metrics. This construction has been worked out in detail by clarke2013completion – including the existence of minimizing paths in Met¯(M)¯Met𝑀\overline{\operatorname{Met}}(M)over¯ start_ARG roman_Met end_ARG ( italic_M ). In the following proof, we will omit these details and refer the interested reader to the article clarke2013completion for a more in-depth discussion. In Theorem 1, we present an explicit formula for the minimizing geodesic in Met¯(M)¯Met𝑀\overline{\operatorname{Met}}(M)over¯ start_ARG roman_Met end_ARG ( italic_M ) that connects two given Riemannian metrics.

Theorem 1 (Minimizing geodesics)

For g0,g1Met(M)subscript𝑔0subscript𝑔1normal-Met𝑀g_{0},g_{1}\in\operatorname{Met}(M)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ roman_Met ( italic_M ) we define

k(x)𝑘𝑥\displaystyle k(x)italic_k ( italic_x )=log(g01(x)g1(x)),k0(x)=k(x)Tr(k(x))nIdformulae-sequenceabsentsuperscriptsubscript𝑔01𝑥subscript𝑔1𝑥subscript𝑘0𝑥𝑘𝑥Tr𝑘𝑥𝑛Id\displaystyle=\log\left(g_{0}^{-1}(x)g_{1}(x)\right),\quad k_{0}(x)=k(x)-\frac% {\operatorname{Tr}(k(x))}{n}\operatorname{Id}= roman_log ( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_x ) italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) ) , italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) = italic_k ( italic_x ) - divide start_ARG roman_Tr ( italic_k ( italic_x ) ) end_ARG start_ARG italic_n end_ARG roman_Id(7)
a(x)𝑎𝑥\displaystyle a(x)italic_a ( italic_x )=det(g0(x))4,b(x)=det(g1(x))4,κ(x)=nTr(k0(x)2)4formulae-sequenceabsent4subscript𝑔0𝑥formulae-sequence𝑏𝑥4subscript𝑔1𝑥𝜅𝑥𝑛Trsubscript𝑘0superscript𝑥24\displaystyle=\sqrt[4]{\det(g_{0}(x))},\quad b(x)=\sqrt[4]{\det(g_{1}(x))},% \quad\kappa(x)=\frac{\sqrt{n\operatorname{Tr}(k_{0}(x)^{2})}}{4}= nth-root start_ARG 4 end_ARG start_ARG roman_det ( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) ) end_ARG , italic_b ( italic_x ) = nth-root start_ARG 4 end_ARG start_ARG roman_det ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) ) end_ARG , italic_κ ( italic_x ) = divide start_ARG square-root start_ARG italic_n roman_Tr ( italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG end_ARG start_ARG 4 end_ARG(8)
q(t,x)𝑞𝑡𝑥\displaystyle q(t,x)italic_q ( italic_t , italic_x )=1+t(b(x)cos(κ(x))a(x)a(x)),r(t,x)=tb(x)sin(κ(x))a(x).formulae-sequenceabsent1𝑡𝑏𝑥𝜅𝑥𝑎𝑥𝑎𝑥𝑟𝑡𝑥𝑡𝑏𝑥𝜅𝑥𝑎𝑥\displaystyle=1+t\left(\frac{b(x)\cos(\kappa(x))-a(x)}{a(x)}\right),\quad r(t,% x)=\frac{tb(x)\sin(\kappa(x))}{a(x)}.= 1 + italic_t ( divide start_ARG italic_b ( italic_x ) roman_cos ( italic_κ ( italic_x ) ) - italic_a ( italic_x ) end_ARG start_ARG italic_a ( italic_x ) end_ARG ) , italic_r ( italic_t , italic_x ) = divide start_ARG italic_t italic_b ( italic_x ) roman_sin ( italic_κ ( italic_x ) ) end_ARG start_ARG italic_a ( italic_x ) end_ARG .(9)

Then the minimal path g(t,x)𝑔𝑡𝑥g(t,x)italic_g ( italic_t , italic_x ) with respect to the Ebin metric in Met¯(M)normal-¯normal-Met𝑀\overline{\operatorname{Met}}(M)over¯ start_ARG roman_Met end_ARG ( italic_M ) that connects g0subscript𝑔0g_{0}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT to g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is given by

g={(q2+r2)2ng0exp(arctan(r/q)κk0)0<κ<π,q4ng0κ=0,(1a+bat)4ng0𝟙[0,aa+b]+(a+bbtab)4ng1𝟙[aa+b,1]κπ,𝑔casessuperscriptsuperscript𝑞2superscript𝑟22𝑛subscript𝑔0exp𝑟𝑞𝜅subscript𝑘00𝜅𝜋superscript𝑞4𝑛subscript𝑔0𝜅0superscript1𝑎𝑏𝑎𝑡4𝑛subscript𝑔0subscript10𝑎𝑎𝑏superscript𝑎𝑏𝑏𝑡𝑎𝑏4𝑛subscript𝑔1subscript1𝑎𝑎𝑏1𝜅𝜋\displaystyle g=\begin{cases}\left(q^{2}+r^{2}\right)^{\frac{2}{n}}g_{0}% \operatorname{exp}\left(\frac{\arctan(r/q)}{\kappa}k_{0}\right)&0<\kappa<\pi,% \\ q^{\frac{4}{n}}g_{0}&\kappa=0,\\ \left(1-\frac{a+b}{a}t\right)^{\frac{4}{n}}g_{0}\mathbbm{1}_{\left[0,\frac{a}{% a+b}\right]}+\left(\frac{a+b}{b}t-\frac{a}{b}\right)^{\frac{4}{n}}g_{1}% \mathbbm{1}_{\left[\frac{a}{a+b},1\right]}&\kappa\geq\pi,\end{cases}italic_g = { start_ROW start_CELL ( italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 2 end_ARG start_ARG italic_n end_ARG end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT roman_exp ( divide start_ARG roman_arctan ( italic_r / italic_q ) end_ARG start_ARG italic_κ end_ARG italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_CELL start_CELL 0 < italic_κ < italic_π , end_CELL end_ROW start_ROW start_CELL italic_q start_POSTSUPERSCRIPT divide start_ARG 4 end_ARG start_ARG italic_n end_ARG end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL start_CELL italic_κ = 0 , end_CELL end_ROW start_ROW start_CELL ( 1 - divide start_ARG italic_a + italic_b end_ARG start_ARG italic_a end_ARG italic_t ) start_POSTSUPERSCRIPT divide start_ARG 4 end_ARG start_ARG italic_n end_ARG end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT blackboard_1 start_POSTSUBSCRIPT [ 0 , divide start_ARG italic_a end_ARG start_ARG italic_a + italic_b end_ARG ] end_POSTSUBSCRIPT + ( divide start_ARG italic_a + italic_b end_ARG start_ARG italic_b end_ARG italic_t - divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG ) start_POSTSUPERSCRIPT divide start_ARG 4 end_ARG start_ARG italic_n end_ARG end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT blackboard_1 start_POSTSUBSCRIPT [ divide start_ARG italic_a end_ARG start_ARG italic_a + italic_b end_ARG , 1 ] end_POSTSUBSCRIPT end_CELL start_CELL italic_κ ≥ italic_π , end_CELL end_ROW(10)

where 𝟙1\mathbbm{1}blackboard_1 denotes the indicator function in the variable t𝑡titalic_t. We suppressed the functions’ dependence on t𝑡titalic_t and x𝑥xitalic_x for better readability.

Proof  This theorem is essentially a reformulation of the minimal geodesic formula given in (clarke2013geodesics, Theorem 4.16). In fact, noting that the Ebin metric (5) is point-wise, we can restrict ourselves to each xM𝑥𝑀x\in Mitalic_x ∈ italic_M. By (clarke2013geodesics, Theorem 4.5), we know that in the case of 0κ(x)<π0𝜅𝑥𝜋0\leq\kappa(x)<\pi0 ≤ italic_κ ( italic_x ) < italic_π, g1(x)subscript𝑔1𝑥g_{1}(x)italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) is in the image of the Riemannian exponential map starting at g0(x)subscript𝑔0𝑥g_{0}(x)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ), and the Riemannian exponential is a diffeomorphism between U:=S2Tx*M\(,4/n]g0(x)assign𝑈\superscript𝑆2superscriptsubscript𝑇𝑥𝑀4𝑛subscript𝑔0𝑥U:=S^{2}T_{x}^{*}M\backslash(-\infty,-4/n]g_{0}(x)italic_U := italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_M \ ( - ∞ , - 4 / italic_n ] italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) and its image. Here S2Tx*Msuperscript𝑆2superscriptsubscript𝑇𝑥𝑀S^{2}T_{x}^{*}Mitalic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_T start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_M denotes the vector space of all symmetric (0,2) tensors at xM𝑥𝑀x\in Mitalic_x ∈ italic_M. Using the formula of the inverse exponential map in (clarke2013geodesics, Theorem 4.5) we calculate the preimage of g1(x)subscript𝑔1𝑥g_{1}(x)italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ),

Expg01g1|x={4n(b(x)a(x)cosκ(x)1)g0(x)+b(x)sinκ(x)κ(x)a(x)g0(x)k0(x)0<κ(x)<π,4n(b(x)a(x)1)g0(x)κ(x)=0.evaluated-atsuperscriptsubscriptExpsubscript𝑔01subscript𝑔1𝑥cases4𝑛𝑏𝑥𝑎𝑥𝜅𝑥1subscript𝑔0𝑥𝑏𝑥𝜅𝑥𝜅𝑥𝑎𝑥subscript𝑔0𝑥subscript𝑘0𝑥0𝜅𝑥𝜋4𝑛𝑏𝑥𝑎𝑥1subscript𝑔0𝑥𝜅𝑥0\displaystyle\operatorname{Exp}_{g_{0}}^{-1}g_{1}\big{|}_{x}=\begin{cases}% \frac{4}{n}\left(\frac{b(x)}{a(x)}\cos\kappa(x)-1\right)g_{0}(x)+\frac{b(x)% \sin\kappa(x)}{\kappa(x)a(x)}g_{0}(x)k_{0}(x)&0<\kappa(x)<\pi,\\[5.0pt] \frac{4}{n}\left(\frac{b(x)}{a(x)}-1\right)g_{0}(x)&\kappa(x)=0.\end{cases}roman_Exp start_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = { start_ROW start_CELL divide start_ARG 4 end_ARG start_ARG italic_n end_ARG ( divide start_ARG italic_b ( italic_x ) end_ARG start_ARG italic_a ( italic_x ) end_ARG roman_cos italic_κ ( italic_x ) - 1 ) italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) + divide start_ARG italic_b ( italic_x ) roman_sin italic_κ ( italic_x ) end_ARG start_ARG italic_κ ( italic_x ) italic_a ( italic_x ) end_ARG italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) end_CELL start_CELL 0 < italic_κ ( italic_x ) < italic_π , end_CELL end_ROW start_ROW start_CELL divide start_ARG 4 end_ARG start_ARG italic_n end_ARG ( divide start_ARG italic_b ( italic_x ) end_ARG start_ARG italic_a ( italic_x ) end_ARG - 1 ) italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) end_CELL start_CELL italic_κ ( italic_x ) = 0 . end_CELL end_ROW(11)

The geodesic formula in the case of 0κ(x)<π0𝜅𝑥𝜋0\leq\kappa(x)<\pi0 ≤ italic_κ ( italic_x ) < italic_π then follows immediately from (clarke2013geodesics, Theorem 4.4). For the case of κ(x)π𝜅𝑥𝜋\kappa(x)\geq\piitalic_κ ( italic_x ) ≥ italic_π, by (clarke2013geodesics, Theorem 4.14) the minimal geodesic between g0(x)subscript𝑔0𝑥g_{0}(x)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) and g1(x)subscript𝑔1𝑥g_{1}(x)italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) is given by the concatenation of the straight segments from g0(x)subscript𝑔0𝑥g_{0}(x)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) to the zero tensor and from the zero tensor to g1(x)subscript𝑔1𝑥g_{1}(x)italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ), which gives the last statement and finally proves the result.  

An example of calculating a geodesic in the space Met¯(M)¯Met𝑀\overline{\operatorname{Met}}(M)over¯ start_ARG roman_Met end_ARG ( italic_M ) using the explicit formula is visualized in Figure 2. The ellipse in the fifth row and fourth column, and the one in the first column and row of this figure are examples of geodesic paths that include possibly degenerate Riemannian metrics from the completion Met¯(M)¯Met𝑀\overline{\operatorname{Met}}(M)over¯ start_ARG roman_Met end_ARG ( italic_M ). Note that handling these degenerate cases are well understood and we did not observe any numerical issues associated with such cases.

Refer to caption

t=0𝑡0t=0italic_t = 0          t=1/6𝑡16t=1/6italic_t = 1 / 6         t=2/6𝑡26t=2/6italic_t = 2 / 6         t=3/6𝑡36t=3/6italic_t = 3 / 6         t=4/6𝑡46t=4/6italic_t = 4 / 6         t=5/6𝑡56t=5/6italic_t = 5 / 6         t=1𝑡1t=1italic_t = 1

Figure 2: An example of an interpolating geodesic between two metric tensors on the grid with respect to the Ebin metric (5), where the left and the right ellipse fields represent the boundary metrics. One can observe the behavior of the Ebin metric by following the deformations of the ellipses representing the metric tensor.

Next, we recall that the geodesic distance of a Riemannian metric is defined as the infimum of all paths connecting two given points,

distMet(g0,g1)=inf01Gg(tg,tg)𝑑t,subscriptdistMetsubscript𝑔0subscript𝑔1infimumsuperscriptsubscript01subscript𝐺𝑔subscript𝑡𝑔subscript𝑡𝑔differential-d𝑡\operatorname{dist}_{\operatorname{Met}}(g_{0},g_{1})=\inf\int_{0}^{1}\sqrt{G_% {g}(\partial_{t}g,\partial_{t}g)}dt,roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT ( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = roman_inf ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT square-root start_ARG italic_G start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT ( ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g , ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g ) end_ARG italic_d italic_t ,(12)

where the infimum is taken over all paths g:[0,1]Met(M):𝑔01Met𝑀g:[0,1]\to\operatorname{Met}(M)italic_g : [ 0 , 1 ] → roman_Met ( italic_M ) with g(0)=g0𝑔0subscript𝑔0g(0)=g_{0}italic_g ( 0 ) = italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and g(1)=g1𝑔1subscript𝑔1g(1)=g_{1}italic_g ( 1 ) = italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. As a direct consequence of Theorem 1, we obtain the explicit formula for the distance function given in Corollary 2.

Corollary 2 (Geodesic distance)

Let g0,g1Met(M)subscript𝑔0subscript𝑔1normal-Met𝑀g_{0},g_{1}\in\operatorname{Met}(M)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ roman_Met ( italic_M ) and let k,k0𝑘subscript𝑘0k,k_{0}italic_k , italic_k start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, a𝑎aitalic_a, b𝑏bitalic_b and κ𝜅\kappaitalic_κ be as in Theorem 1. Let θ(x)=min{π,κ(x)}.𝜃𝑥𝜋𝜅𝑥\theta(x)=\min\left\{\pi,\kappa(x)\right\}.italic_θ ( italic_x ) = roman_min { italic_π , italic_κ ( italic_x ) } . Then the squared geodesic distance of the Ebin metric is given by

distMet(g0,g1)2=16nM(a(x)22a(x)b(x)cos(θ(x))+b(x)2)dx.\displaystyle\operatorname{dist}_{\operatorname{Met}}(g_{0},g_{1})^{2}=\frac{1% 6}{n}\int_{M}\left(a(x)^{2}-2a(x)b(x)\cos\left(\theta(x)\right)+b(x)^{2}\right% )dx.roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT ( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = divide start_ARG 16 end_ARG start_ARG italic_n end_ARG ∫ start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ( italic_a ( italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_a ( italic_x ) italic_b ( italic_x ) roman_cos ( italic_θ ( italic_x ) ) + italic_b ( italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) italic_d italic_x .(13)

Proof  Using Theorem 1, we obtain the formula of the minimal geodesic that connects g0subscript𝑔0g_{0}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. By calculating the time derivative tg(t)subscript𝑡𝑔𝑡\partial_{t}g(t)∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_g ( italic_t ), the final statement follows from the definition of the geodesic distance (12) by a direct computation.  

Having equipped the space of Riemannian metrics with the distance function (13), we can consider the Fréchet mean, g^^𝑔\hat{g}over^ start_ARG italic_g end_ARG, of a collection of metrics, g1,gNsubscript𝑔1subscript𝑔𝑁g_{1},\ldots g_{N}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_g start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, which is defined as a minimizer of the sum of squared distances.

g^=argmin𝑔i=1NdistMet2(g,gi).^𝑔𝑔argminsuperscriptsubscript𝑖1𝑁superscriptsubscriptdistMet2𝑔subscript𝑔𝑖\hat{g}=\underset{g}{\operatorname{\rm argmin}}\sum_{i=1}^{N}\operatorname{% dist}_{\operatorname{Met}}^{2}(g,g_{i}).over^ start_ARG italic_g end_ARG = underitalic_g start_ARG roman_argmin end_ARG ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g , italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) .(14)

One could directly minimize this functional using a gradient-based optimization procedure. As our distance function is the geodesic distance function of a Riemannian metric and since we have access to an explicit formula for the minimizing geodesics, we will instead use the iterative geodesic marching algorithm, see e.g. ho2013recursive, to approximate the Fréchet mean: Given N𝑁Nitalic_N Riemannian metrics gisubscript𝑔𝑖g_{i}italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT, we approximate the Fréchet mean via g^=g^N^𝑔subscript^𝑔𝑁\hat{g}=\hat{g}_{N}over^ start_ARG italic_g end_ARG = over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_N end_POSTSUBSCRIPT, where g^isubscript^𝑔𝑖\hat{g}_{i}over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is recursively defined as g^0=g0subscript^𝑔0subscript𝑔0\hat{g}_{0}=g_{0}over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, g^i(x)=g(1/(i+1),x)subscript^𝑔𝑖𝑥𝑔1𝑖1𝑥\hat{g}_{i}(x)=g(1/(i+1),x)over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) = italic_g ( 1 / ( italic_i + 1 ) , italic_x ) and where g(t,x)𝑔𝑡𝑥g(t,x)italic_g ( italic_t , italic_x ) is the minimal path, as given in Theorem 1, connecting g^i1subscript^𝑔𝑖1\hat{g}_{i-1}over^ start_ARG italic_g end_ARG start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT to the i𝑖iitalic_i-th data point gisubscript𝑔𝑖g_{i}italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT. Thus one only has to calculate N𝑁Nitalic_N geodesics in total in the space of Riemannian metrics, whereas a gradient-based algorithm would require one to calculate N𝑁Nitalic_N geodesic distances in each step of the gradient descent.

3.1 The Induced Distance Function on the Diffeomorphism Group

We can use the geodesic distance function of the Ebin metric to induce a right-invariant distance function on the group of diffeomorphisms. As we will be using this distance function as a regularization term in our matching functional, we will briefly describe this construction here. We fix a Riemannian metric gMet(M)𝑔Met𝑀g\in\operatorname{Met}(M)italic_g ∈ roman_Met ( italic_M ) and define the “distance” of a diffeomorphism φ𝜑\varphiitalic_φ to the identity via

distDiff2(id,φ)=distMet2(g,φ*g)=distMet2(g,φ*g),superscriptsubscriptdistDiff2id𝜑superscriptsubscriptdistMet2𝑔superscript𝜑𝑔superscriptsubscriptdistMet2𝑔subscript𝜑𝑔\operatorname{dist}_{\operatorname{Diff}}^{2}(\operatorname{id},\varphi)=% \operatorname{dist}_{\operatorname{Met}}^{2}(g,\varphi^{*}g)=\operatorname{% dist}_{\operatorname{Met}}^{2}(g,\varphi_{*}g),roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_id , italic_φ ) = roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g , italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g ) = roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g , italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g ) ,(15)

where the last equality is due to the invariance of the Ebin metric. To be more precise, this distance can be degenerate on the full diffeomorphism group since the isometries of the Riemannian metric g𝑔gitalic_g form the kernel of distDiffsubscriptdistDiff\operatorname{dist}_{\operatorname{Diff}}roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT. For our purposes we will consider the Euclidean metric for the definition of distDiffsubscriptdistDiff\operatorname{dist}_{\operatorname{Diff}}roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT. Thus the only elements in the kernel are translations and rotations. The right invariance of distDiffsubscriptdistDiff\operatorname{dist}_{\operatorname{Diff}}roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT follows directly from the Diff(M)Diff𝑀\operatorname{Diff}(M)roman_Diff ( italic_M )-invariance of the Ebin metric. We note, however, that distDiffsubscriptdistDiff\operatorname{dist}_{\operatorname{Diff}}roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT is not directly associated with a Riemanian structure on the diffeomorphism group: the orbits of the diffeomorphism group in the space of metrics are not totally geodesic and thus distDiffsubscriptdistDiff\operatorname{dist}_{\operatorname{Diff}}roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT is not the geodesic distance of the pullback of the Ebin metric to the space of diffeomorphisms. See also KLMP2013 where this construction has been studied in more detail.

4 Computational Anatomy of the Human Connectome

Fundamental to the precise characterization and comparison of the human connectome of an individual subject or a population as a whole is the ability to map or register two different human connectomes. The framework of Large Deformation Diffeomorphic Metric Mapping (LDDMM) is well developed for registering points (joshi2000landmark), curves (glaunes2008large) and surfaces (vaillant2005surface) all modeled as submanifolds of 3superscript3{\mathbb{R}}^{3}blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT as well as images modeled as an L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT function (beg2005computing).This framework has also been extended to densities (bauer2015diffeomorphic) modeled as volume forms. We now extend the diffeomorphic mapping framework to the connectome modeled as Riemannian metrics. The diffeomorphism group deforms the domain, M𝑀Mitalic_M, and acts naturally on the space of metrics, Met(M)Met𝑀\operatorname{Met}(M)roman_Met ( italic_M ), see Equation (4). With this action and a reparameterization-invariant metric, the problem of registering two connectomes fits naturally into the framework of computational anatomy.

Now the registration of two connectomes is achieved by minimizing the energy

E(φ)=distDiff2(id,φ)+λ1distMet2(g0,φ*g1)𝐸𝜑superscriptsubscriptdistDiff2id𝜑subscript𝜆1superscriptsubscriptdistMet2subscript𝑔0subscript𝜑subscript𝑔1E(\varphi)=\operatorname{dist}_{\operatorname{Diff}}^{2}(\operatorname{id},% \varphi)+\lambda_{1}\operatorname{dist}_{\operatorname{Met}}^{2}(g_{0},\varphi% _{*}g_{1})italic_E ( italic_φ ) = roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_id , italic_φ ) + italic_λ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )(16)

over all such diffeomorphisms in Diff(M)Diff𝑀\operatorname{Diff}(M)roman_Diff ( italic_M ). Here distDiffsubscriptdistDiff\operatorname{dist}_{\operatorname{Diff}}roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT is a right invariant distance on DiffDiff\operatorname{Diff}roman_Diff and distMetsubscriptdistMet\operatorname{dist}_{\operatorname{Met}}roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT is a reparameterization-invariant distance on the space of all Riemannian metrics, e.g., the geodesic distance of the metrics studied above. The first term measures the deformation cost and the second term is a similarity measure between the target and the deformed source connectome. The invariance of the two distances is essential for the minimization problem to be independent of the choice of coordinate system on the brain manifold.

We use the distance function as introduced in Section 3.1 to measure the deformation cost, i.e., distDiff(id,φ)=distMet(g,φ*g)=distMet(g,φ*g)subscriptdistDiffid𝜑subscriptdistMet𝑔subscript𝜑𝑔subscriptdistMet𝑔superscript𝜑𝑔\operatorname{dist}_{\operatorname{Diff}}(\operatorname{id},\varphi)=% \operatorname{dist}_{\operatorname{Met}}(g,\varphi_{*}g)=\operatorname{dist}_{% \operatorname{Met}}(g,\varphi^{*}g)roman_dist start_POSTSUBSCRIPT roman_Diff end_POSTSUBSCRIPT ( roman_id , italic_φ ) = roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT ( italic_g , italic_φ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT italic_g ) = roman_dist start_POSTSUBSCRIPT roman_Met end_POSTSUBSCRIPT ( italic_g , italic_φ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g ) where g𝑔gitalic_g is the restriction of the Euclidean metric to the brain domain. This choice greatly increases computational efficiency since we can now use the formulas from Section 3 as explicit formulas for both terms of the energy functional. To minimize the energy functional, we use a gradient flow approach described in Algorithm LABEL:algo1, where the gradient on Diff(M)Diff𝑀\operatorname{Diff}(M)roman_Diff ( italic_M ) is calculated with respect to a right invariant Sobolev metric of order one, which at the identity is given by

Gid(u,v)=g(Δu,v)𝑑x+λi=1kg(u,ξi)g(v,ξi)dxsubscript𝐺id𝑢𝑣𝑔Δ𝑢𝑣differential-d𝑥𝜆superscriptsubscript𝑖1𝑘𝑔𝑢subscript𝜉𝑖𝑔𝑣subscript𝜉𝑖𝑑𝑥G_{\operatorname{id}}(u,v)=\int g(\Delta u,v)dx+\lambda\sum_{i=1}^{k}g(u,\xi_{% i})g(v,\xi_{i})dxitalic_G start_POSTSUBSCRIPT roman_id end_POSTSUBSCRIPT ( italic_u , italic_v ) = ∫ italic_g ( roman_Δ italic_u , italic_v ) italic_d italic_x + italic_λ ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT italic_g ( italic_u , italic_ξ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_g ( italic_v , italic_ξ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) italic_d italic_x(17)

where λ>0𝜆0\lambda>0italic_λ > 0 is a weight parameter, g𝑔gitalic_g is the restriction of the Euclidean metric to the brain domain and ξ1,ξksubscript𝜉1subscript𝜉𝑘\xi_{1},\ldots\xi_{k}italic_ξ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_ξ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is an orthonormal basis of the harmonic vector fields on M𝑀Mitalic_M. This metric, sometimes called the information metric, has been first introduced by Modin2015; see also bauer2015diffeomorphic. We choose this specific gradient because of the relation of the information metric to both the Ebin metric on the space of metrics and the Fisher-Rao metric on the space of probability densities. We summarize the relations between these geometries in Figure LABEL:fig:DiffMetCommute; for a precise description of the underlying geometric picture we refer to KLMP2013 and bauer2015diffeomorphic.