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Abstract

Deep learning-based models, when trained in a fully-supervised manner, can be effective
in performing complex image analysis tasks, although contingent upon the availability
of large labeled datasets. Especially in the medical imaging domain, however, expert
image annotation is expensive, time-consuming, and prone to variability. Semi-supervised
learning from limited quantities of labeled data has shown promise as an alternative.
Maximizing knowledge gains from copious unlabeled data benefits semi-supervised learning
models. Moreover, learning multiple tasks within the same model further improves its
generalizability. We propose MultiMix, a new multi-task learning model that jointly
learns disease classification and anatomical segmentation in a semi-supervised manner,
while preserving explainability through a novel saliency bridge between the two tasks.
Our experiments with varying quantities of multi-source labeled data in the training sets
confirm the effectiveness of MultiMix in the simultaneous classification of pneumonia and
segmentation of the lungs in chest X-ray images. Moreover, both in-domain and cross-
domain evaluations across these tasks further showcase the potential of our model to adapt
to challenging generalization scenarios.

Keywords: Multi-Task Learning, Semi-Supervised Learning, Data Augmentation, Saliency
Bridge, Classification, Segmentation, Chest X-Ray, Lungs, Pneumonia

1. Introduction

Learning-based medical image analysis has become widespread with the advent of deep
learning. However, most deep learning models rely on large pools of labeled data. Especially
in the medical imaging domain, obtaining copious labeled imagery is often infeasible, as
annotation requires substantial domain expertise and manual labor. Therefore, developing
large-scale deep learning methodologies for medical image analysis tasks is challenging. In
confronting the limited labeled data problem, Semi-Supervised Learning (SSL) has been
gaining attention. In semi-supervised learning, unlabeled training examples are leveraged
in combination with labeled examples to maximize information gains (Chapelle et al.,
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2009). Specifically within the medical domain, where collecting data is generally easier than
annotating those data, the use of deep learning for medical image analysis tasks can be
fostered by leveraging semi-supervised learning.

Recent research has yielded a variety of semi-supervised learning techniques (Imran,
2020). Pseudo-labeling (Lee, 2013) trains a model with labeled data and unlabeled data
simultaneously, generating labels for the unlabeled data by assuming the model-predicted
labels to be reliable. Similarly, entropy minimization (Grandvalet and Bengio, 2005) trains
so as to match the predicted data distribution of unlabeled data with that of the labeled
data, under the assumption that unlabeled examples should yield prediction distributions
that are similar to those from labeled examples (Ouali et al., 2020). Domain adaptation
(Beijbom, 2012) is a form of inductive transfer learning, where a model is trained on labeled
data from the source domain as well as labeled plus unlabeled data from the target domain,
which improves model generalization for the target domain, but lacks clinical value if the
target domain data is inaccessible during training.

Thus, progress has been made in learning from limited labeled data, although mainly
within the confines of single-task learning. In particular, individual medical imaging tasks,
such as diagnostic classification and anatomical segmentation, have been addressed using
state-of-the-art Convolutional Neural Network (CNN) models (Anwar et al., 2018); e.g.,
for medical image segmentation, encoder-decoder networks (Ronneberger et al., 2015),
variational auto-encoder networks, (Myronenko, 2018), context encoder networks (Gu et al.,
2019), multiscale adversarial learning (Imran and Terzopoulos, 2021a), etc.

By contrast, Multi-Task Learning (MTL) is defined as optimizing more than one loss
in a single model such that multiple related tasks are performed by sharing the learned
representation (Ruder, 2017). Jointly training multiple tasks within a model improves the
generalizability of the model as each of the tasks regularizes the others (Caruana, 1993).
Assuming that training data with limited annotations come from different distributions
for different tasks, multi-task learning may be useful in such scenarios for learning in a
scarcely-supervised manner (Imran et al., 2020; Imran and Terzopoulos, 2021b).

Combining the objectives of substantially unlabeled data training and multi-task learning,
Semi-Supervised Multi-Task Learning (SSMTL) is a promising research area in the context
of medical image analysis. While there have been prior efforts on multi-tasking (Mehta et al.,
2018; Girard et al., 2019), rarely do they focus on incorporating semi-supervised learning
particularly within the medical realm. Liu et al. (2008) proposed a general semi-supervised
multi-tasking method that uses soft-parameter sharing to allow multiple classification tasks
in a single model. Gao et al. (2019) performed multi-tasking on tasks within the same
medical domain by exploiting feature transfer. Adversarial learning (Salimans et al., 2016)
combines a classifier with a discriminator to perform semi-supervised, adversarial multi-
tasking. Imran and Terzopoulos (2019) introduced semi-supervised multi-task learning using
adversarial learning and attention masking. Zhou et al. (2019) proposed a semi-supervised
multi-tasking model that uses an attention mechanism to grade segmented retinal images.
None of the aforecited works, however, take into consideration the disparity in the training
data distributions for multiple tasks.

To learn diagnostic classification and anatomical segmentation jointly from substantially
unlabeled multi-source data, we propose MultiMix, a novel, better-generalized multi-tasking
model that incorporates confidence-based augmentation and a module that bridges the
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classification and segmentation tasks. This saliency bridge module produces a saliency
map by computing the gradient of the class score with respect to the input image, thus
not only enabling the analysis of the model’s predictions, but also improving the model’s
performance of both tasks. While the explainability of any deep learning model can be based
on visualizing saliency maps (Simonyan et al., 2014; Zhang et al., 2016; Hu et al., 2019), to
our knowledge a saliency bridge between two shared tasks within a single model has not
previously been explored. We demonstrate that the saliency bridge module in conjunction
with a simple yet effective semi-supervised learning method in a multi-tasking setting can
yield improved and consistent performance across multiple domains.

This article is a revised and extended version of our ISBI publication (Haque et al.,
2021).1 Our main contributions may be summarized as follows:

• A new semi-supervised learning model, MultiMix, that exploits confidence-based data
augmentation and consistency regularization to jointly learn diagnostic classification
and anatomical segmentation from multi-source, multi-domain medical image datasets.

• Incorporation of an innovative saliency bridge module connecting the segmentation
and classification branches of the model, resulting in the improved performance of
both tasks.

• Substantiation of the improved generalizability (both in-domain and cross-domain)
of the proposed model via experimentation with varied quantities of labeled data
and mixed data sources related to multiple tasks, specifically in the classification of
pneumonia and the simultaneous segmentation of the lungs in chest X-ray images.

• MultiMix software made available at https://github.com/ayaanzhaque/MultiMix.

2. The MultiMix Model

To formulate our approach, we assume unknown data distributions p(Xc, C) over images
Xc and class labels C as well as p(Xs, S) over images Xs and segmentation labels S. Hence,
segmentation labels for the Xc images and class labels for the Xs images are unavailable. We
also assume access to labeled training sets Dc

l sampled i.i.d. from p(Xc, C) and Ds
l sampled

i.i.d. from p(Xs, S), along with unlabeled training sets Dc
u sampled i.i.d. from p(Xc) and Ds

u

sampled i.i.d. from p(Xs), after marginalizing out C and S, respectively.
In our MultiMix model (Figure 1), we utilize a U-Net-like (Ronneberger et al., 2015)

encoder-decoder architecture for image deconstruction and reconstruction. The encoder
functions similarly to a standard CNN. To perform multi-tasking, we use pooling layers
followed by fully-connected layers, allowing the encoder to output class predictions through
the classification branch of the model. Furthermore, in the segmentaton branch of the model,
the segmentation predictions are obtained as the output of the decoder.

MultiMix performs multi-tasking in a semi-supervised learning manner, assuming the
training data for the two tasks come from disparate distributions. It is well established

1. With an augmented literature review, a more detailed explanation of the methods, model architecture,
and training algorithm, further details about the datasets, saliency map visualizations from multiple
datasets, and additional results and discussion supported by quantitative (performance metrics tables)
and qualitative (mask predictions, Bland Altman plots, ROC curves, consistency plots) characteristics.
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Figure 1: Schematic of the MultiMix model. Classification: Using predictions on unlabeled
weakly augmented images, pseudo-labels are generated with confidence, and loss is computed
with these labels and the strongly augmented versions of those images. Segmentation:

Saliency maps generated from the class predictions are concatenated via the saliency bridge
module to guide the decoder in generating the segmentation masks.

that a multi-tasking model usually outperforms its single-task counterparts (Imran and
Terzopoulos, 2019; Imran et al., 2020; Imran, 2020). The shared encoder in the MultiMix
model learns features useful for addressing both the classification and segmentation tasks.
This joint representation learning enables the model to avoid overfitting and generalize
better. Most importantly, it exploits the relatedness of the tasks, which is crucial for effective
multi-tasking.

In the following sections, we describe the classification and segmentation branches of
the MultiMix model, explain the saliency bridge module that bridges the two branches, and
specify the MultiMix training procedure.

2.1 Classification Branch

For semi-supervised classification, we leverage data augmentation and pseudo-labeling.
Inspired by the work of Sohn et al. (2020), for each unlabeled image we perform two degrees
of augmentation: weak and strong. The former consists of standard augmentations—both
random horizontal flipping and random cropping—and is applied to the labeled data as
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well, whereas the latter is performed by randomly applying any number of augmentations
from a pool of “heavy” augmentations.2 An unlabeled image xcu is first weakly augmented,
xcw = WAug(xcu), and a pseudo-label cp = argmax(ĉw) g t is synthesized from xcw using the
model prediction ĉw. The image-label pair is retained only if the confidence with which
the model generates the pseudo-label exceeds the experimentally tuned threshold t, thus
deterring learning from poor and incorrect labels. Second, xcg = GAug(xcu) are strongly
augmented versions of xcu.

Our training strategy promotes effective learning from large amounts of unlabeled data,
which is challenging. At first, the predictions are less reliable as the model begins to learn
mainly from the labeled data, but the model gains confidence with the generation of labels
for the unlabeled images and, as a result, it becomes more proficient. Since the unlabeled
examples are incrementally added to the training set, subject to the threshold, the model
learns to predict more accurately in a progressive manner and, with increasing confidence, the
performance of the model improves at an increasingly higher rate. Furthermore, employing
two degrees of augmentation enables the model to maximize its knowledge gain from the
unlabeled data due to the enhanced image diversity through what is known as consistency
learning as, in theory, two augmented versions of the same image should yield the same
prediction, which is encouraged using an unsupervised loss. In other words, imposing on the
model, through an unsupervised loss, to produce the same predictions on images subjected
to two different degrees of augmentation results in better classification performance.

The classification objective

Lc(cl, ĉl, cp, ĉg) = Ll(cl, ĉl) + λLu(cp, ĉg) (1)

includes a supervised loss component Ll for the labeled data, which uses cross-entropy
between the reference class label cl and the model prediction ĉl, as well as an unsupervised
loss component Lu for the unlabeled data, which uses cross-entropy between the pseudo-label
cp and the model prediction ĉg.

Note that the model is trained to ignore GAug as it is provided the pseudo-label cp. Since
the underlying data distributions are the same for both augmentations, it is compelled to
learn that for the sake of consistency. Weak augmentations are used to produce reliable and
usable pseudo-labels whereas strong augmentations are used to provide a difficult challenge
for the model. This difficulty forces the model to learn more effective representations in
order to be accurate, and it also prevents overfitting from minimizing the loss too early.
With the assumption that the weakly augmented image has the correct label to be associated
with the strongly augmented image, the model is empowered to discern the augmentations
in the image, and its performance improves as a result, by learning the underlying features
crucial to the diagnosis. This helps achieve better generalization despite the differences in
data distributions across different domains. By teaching the model to learn only the more
salient representations that will exist to some extent in all domains, it can generalize and be
effective across domains.

2. This pool includes augmentations such as horizontal flip, crop, autocontrast, brightness, contrast, equalize,
identity, posterize, rotate, sharpness, shearX, shearY, solarize, translateX, and TranslateY. Autocontrast,
brightness, contrast, and equalize are all severe image intensity modifications.
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2.2 Segmentation Branch

For segmentation, the predictions are made through the encoder-decoder architecture with
skip connections. For the labeled samples xsl , we calculate the direct segmentation loss in the
form of Dice loss Ll(sl, ŝl) between the reference lung mask sl and predicted segmentation
ŝl. Since we do not have the segmentation masks for the unlabeled examples xsu, we cannot
directly calculate the segmentation loss for them. To ensure consistency, we compute the
KL divergence Lu(ŝl, ŝu) between segmentation predictions for the labeled examples and
unlabeled examples ŝu. This penalizes the model for making predictions that increasingly
differ from those of the labeled data, which helps the model fit the unlabeled data. The
total segmentation objective is therefore

Ls(sl, ŝl, ŝu) = αLl(sl, ŝl) + βLu(ŝl, ŝu), (2)

where α and β are weights.

2.3 Saliency Bridge Module

We incorporate a saliency bridge module to bridge between the classification and segmentation
branches of the MultiMix model, as indicated in Figure 1. To learn which image regions are
most relevant to classification, saliency maps

yl = Saliency(ĉsl ) and yu = Saliency(ĉsu), (3)

where ĉsl and ĉsu denote the class predictions for the input images xsl and xsu, respectively,
are generated from the classification branch by computing the gradient of the predicted
class with respect to the input image.3 It cannot be directly known if the image samples in
Ds represent normal or diseased cases, thus xsl and xsu are considered to be unlabeled for
the classification task. Therefore, the saliency maps generated via the class prediction are
not true segmentation maps, but they will nonetheless highlight the lungs or lung regions
relevant to the particular disease class (see Appendix C).

The outputs of the saliency bridge module,

bl = yl · xsl and bu = yu · xsu, (4)

obtained by concatenating the saliency maps with the associated input images, are further
downsampled before they are concatenated with the encoder-decoder bottleneck in the
segmentation branch. This results in a tighter connection between the classification and
segmentation tasks and improves the effectiveness of the bridge module, which retains
important information from the encoder that may otherwise be lost because of the repeated
convolutions. The saliency maps serve to guide the segmentation during the decoding phase,
yielding improved segmentation while learning from limited labeled data. With improving
classification performance, the saliency maps become more accurate, thus yielding improved

3. These saliency maps should not be confused with simultaneous segmentation and saliency detection or
prediction, where a semantic segmentation model is trained to produce saliency maps to accompany the
output segmentation masks; e.g., (Zeng et al., 2019). Our saliency bridge module is novel in that it
performs a saliency analysis of MultiMix’s classification branch and leverages it to improve the performance
of its semantic segmentation branch.
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Algorithm 1 MultiMix Mini-Batch Training

Require:

Training set of labeled classification data Dc
l

Training set of labeled segmentation data Ds
l

Training set of unlabeled classification data Dc
u

Training set of unlabeled segmentation data Ds
u

Network architecture Fθ with learnable parameters θ
Minibatch size m

repeat

Create labeled classification minibatch: {1xcl , . . . ,
mxcl } ∼ D

c
l

Create labeled segmentation minibatch: {1xsl , . . . ,
mxsl } ∼ D

s
l

Create unlabeled classification minibatch: {1xcu, . . . ,
mxcu} ∼ D

c
u

Create unlabeled segmentation minibatch: {1xsu, . . . ,
mxsu} ∼ D

s
u

Compute predictions for the labeled data: iĉl ← Fθ(
ixcl );

iŝl ← Fθ(
ixsl )

Generate weakly-augmented samples: ixcw ←WAug(ixcu)
Generate strongly-augmented samples: ixcg ← GAug(ixcu)
Compute predictions for the unlabeled data: iĉw ← Fθ(

ixcw);
iĉg ← Fθ(

ixcg);
iŝu ← Fθ(

ixsu)
Compute pseudo label: icp ← argmax(iĉw) g t

Update Fθ by backpropagating the loss gradient ∇θL
until convergence

segmentations, since the shared parameters responsible for improved classification produce a
feedback loop that allows both tasks to improve jointly.

Conventionally, saliency maps are used to analyze which features and areas of the image
are most relevant for classification, thereby enhancing understanding of the model’s learning
process. Similarly, our saliency module is explainable, as it is a relevant connection between
the classification and segmentation tasks (although model explainability in and of itself is not
the main focus of our work). Since the saliency maps are comparable to segmentation masks,
it is sensible to employ them to guide the decoder in the task of segmentation. Multi-tasking
requires the tasks to be somewhat related, so our task-relevant bridge fosters a tighter bond
between classification and segmentation.

2.4 MultiMix Training Procedure

Algorithm 1 presents the main steps of the MultiMix training procedure applied to
labeled and unlabeled classification and segmentation training data. The model is trained
simultaneously on the classification objective (1) and segmentation objective (2) using the
following total loss for a minibatch size of m:

L =
1

m

m
∑

i=1

(

Lc
(

icl,
iĉl,

icp,
iĉg

)

+ Ls
(

isl,
iŝl,

iŝu
)

)

(5)
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Figure 2: (a) Sample (normal, abnormal) images from the CheX and NIHX datasets. (b)
Intensity distributions of the four chest X-ray image datasets.

Table 1: Details of the datasets used for training and testing.

Mode Dataset Total Normal Abnormal Train Val Test

in-domain
JSRT 247 – – 111 13 123
CheX 5,856 1583 4273 5216 16 624

cross-domain
MCU 138 – – 93 10 35
NIHX 4185 2754 1431 – – 4185

3. Experimental Evaluation

3.1 Data

Models were trained and tested in the combined classification and segmentation tasks using
chest X-ray images from two different sources: pneumonia detection (CheX) (Kermany
et al., 2018) and the Japanese Society of Radiological Technology (JSRT) (Shiraishi et al.,
2000). We further validated the models using the Montgomery County chest X-rays (MCU)
(Jaeger et al., 2014) and a subset of the NIH chest X-ray dataset (NIHX) (Wang et al., 2017)
(Figure 2a). Table 1 presents some details about the datasets used in our experiments. In
addition to the diversity in the source, image quality, size, and proportion of normal and
abnormal images, the disparity in the intensity distributions of the four datasets is also
evident (Figure 2b). All the images were normalized and resized to 256× 256 × 1 before
passing them to the models.
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3.2 Implementation Details

Baselines: We used the U-Net and encoder-only (Enc) networks separately for the single-
task baseline models in both the fully supervised and semi-supervised schemes. Using the
same backbone network, we also trained a multi-tasking U-Net with the classification branch
(UMTL). All these models incorporate an INorm, LReLU, and dropout at every convolutional
block (see Appendix A). Moreover, we performed ablation experiments to assess the impact
of each key piece of our MultiMix model: single-task Enc-SSL (encoder with confidence-based
augmentation SSL), single-task Enc-MM (an implementation of MixMatch (Berthelot et al.,
2019)), UMTL-S (UMTL with saliency bridge), UMTL-SSL (UMTL with SSL classification),
and UMTL-SSL-S (UMTL with saliency bridge and confidence-based augmentation).

Augmentations: We performed random horizontal flip and 32× 32 crop in WAug for the
examples in Dc

u. On the other hand, GAug was applied through a random combination from
the pool of augmentations: random horizontal flip, crop (32× 32), autocontrast, brightness,
contrast, equalize, identity, posterize, rotate (30◦), sharpness, shearX, shearY, solarize,
translateX (30%), and translateY (30%).

Training: All the models (single-task or multi-task) were trained on varying |Ds
l | (10, 50,

full), and |Dc
l | (100, 1000, full). Each experiment was repeated 5 times and the average

performance is reported. We implemented the models using Python and the PyTorch
framework and trained using an Nvidia K80 GPU.

Hyper-parameters: We used the Adam optimizer with adaptive learning rates of 0.1
every 8 epochs and an initial learning rate of 0.0001. A negative slope of 0.2 was applied
to Leaky ReLU, and the dropout was set to 0.25. We set t = 0.7, λ = 0.25, α = 5.0 (for
smaller |Ds

l |) and β = 0.01. Each model was trained with a mini-batch size of m = 10. All
model-specific hyperparameters were experimentally tuned. We found that the performance
of the model varied only minimally subject to the different choices.

Evaluation: For classification, along with the overall accuracy (Acc), we recorded the
class-wise F1 scores (F1-N for normal and F1-P for pneumonia). To evaluate segmentation
performance, we used the Dice similarity (DS), Jaccard similarity (JS), structural similarity
measure (SSIM), average Hausdorff distance (HD), precision (P), and Recall (R) scores.

3.3 Results and Discussion

As is revealed by the results in Table 2, the performance of our model improves with the
inclusion of each of the novel components in the backbone network. For the classification task,
our confidence-based augmentation approach for semi-supervised learning yields significantly
improved performance compared to the baseline models. Even with the min |Dc

l | and min |Ds
l |,

our MultiMix-100-10 model outperforms the fully-supervised baseline (Enc) in classifying
the normal and abnormal chest X-rays. As is confirmed by the Student’s t-test, MultiMix
exhibits significant improvements over the classification baselines Enc, Enc-SSL, and UMTL
(p < 0.05).

For the segmentation task, the inclusion of the saliency bridge module yields large
improvements over the baseline U-Net and UMTL models. Again, with min |Ds

l |, we
observed a 30% performance gain over its counterparts, which proves the effectiveness of our
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Table 2: Classification and segmentation performance figures with varying label proportions
in in-domain evaluations: CheX (classification) and JSRT (segmentation) datasets. The best
scores from fully-supervised models are underlined and the best scores from semi-supervised
models are bolded. Scores are given as mean± std.

Model |Dc
l |

Classification
|Ds

l |
Segmentation

Acc F1-Nor F1-Abn DS JS SSIM HD P R

U
-N
et

— — — — 10 0.634± 0.017 0.695± 0.024 0.810± 0.019 2.899± 0.272 0.779± 0.021 0.865± 0.023
— — — — 50 0.855± 0.004 0.854± 0.008 0.904± 0.003 0.341± 0.071 0.918± 0.009 0.925± 0.009
— — — — Full 0.915± 0.001 0.906± 0.002 0.929± 0.002 0.104± 0.025 0.949± 0.007 0.953± 0.005

En
c

100 0.732± 0.044 0.424± 0.122 0.806± 0.026 — — — — — — —
1000 0.773± 0.037 0.546± 0.020 0.842± 0.018 — — — — — — —
Full 0.737± 0.021 0.534± 0.058 0.838± 0.012 — — — — — — —

En
c-
M
M 100 0.738± 0.043 0.452± 0.103 0.800± 0.024 — — — — — — —

1000 0.745± 0.036 0.560± 0.078 0.584± 0.101 — — — — — — —
Full 0.751± 0.036 0.605± 0.065 0.846± 0.025 — — — — — — —

En
c-
SS
L 100 0.780± 0.035 0.570± 0.083 0.844± 0.021 — — — — — — —

1000 0.822± 0.027 0.692± 0.058 0.876± 0.015 — — — — — — —
Full 0.817± 0.016 0.680± 0.042 0.872± 0.013 — — — — — — —

U
M
T
L

100 0.707± 0.024 0.443± 0.071 0.797± 0.016 10 0.626± 0.008 0.871± 0.014 0.908± 0.010 4.323± 1.268 0.900± 0.014 0.964± 0.007
100 0.655± 0.052 0.683± 0.129 0.853± 0.030 50 0.647± 0.022 0.854± 0.040 0.881± 0.025 4.733± 1.238 0.864± 0.043 0.989± 0.004
100 0.706± 0.046 0.416± 0.138 0.804± 0.028 Full 0.696± 0.014 0.872± 0.0252 0.911± 0.016 3.908± 0.795 0.892± 0.025 0.986± 0.004
1000 0.750± 0.010 0.490± 0.020 0.825± 0.005 10 0.761± 0.004 0.904± 0.009 0.926± 0.002 3.050± 0.531 0.924± 0.001 0.977± 0.009
1000 0.749± 0.024 0.510± 0.064 0.833± 0.009 50 0.768± 0.001 0.927± 0.003 0.938± 0.002 2.606± 0.205 0.940± 0.004 0.985± 0.001
1000 0.747± 0.045 0.530± 0.140 0.840± 0.024 Full 0.759± 0.005 0.928± 0.010 0.930± 0.008 2.955± 0.483 0.924± 0.015 0.981± 0.006
Full 0.744± 0.011 0.515± 0.022 0.828± 0.016 10 0.909± 0.021 0.919± 0.037 0.521± 0.028 0.903± 0.296 0.912± 0.050 0.962± 0.013
Full 0.738± 0.004 0.438± 0.013 0.820± 0.000 50 0.930± 0.000 0.948± 0.000 0.954± 0.000 0.444± 0.142 0.969± 0.001 0.977± 0.001
Full 0.731± 0.018 0.447± 0.067 0.822± 0.009 Full 0.932± 0.000 0.951± 0.000 0.957± 0.000 0.372± 0.052 0.965± 0.001 0.977± 0.001

U
M
T
L-
S

100 0.704± 0.052 0.358± 0.223 0.806± 0.024 10 0.922± 0.007 0.848± 0.013 0.891± 0.009 4.005± 0.413 0.871± 0.017 0.966± 0.005
100 0.701± 0.033 0.336± 0.130 0.796± 0.019 50 0.926± 0.002 0.867± 0.003 0.894± 0.003 4.393± 0.217 0.873± 0.005 0.891± 0.002
100 0.713± 0.041 0.442± 0.164 0.794± 0.025 Full 0.931± 0.003 0.890± 0.006 0.920± 0.003 3.983± 0.375 0.906± 0.008 0.980± 0.004
1000 0.740± 0.020 0.482± 0.052 0.828± 0.012 10 0.948± 0.001 0.908± 0.003 0.924± 0.003 2.546± 0.217 0.931± 0.005 0.972± 0.002
1000 0.771± 0.041 0.566± 0.010 0.844± 0.024 50 0.965± 0.001 0.931± 0.003 0.941± 0.001 2.083± 0.217 0.949± 0.005 0.981± 0.002
1000 0.742± 0.019 0.497± 0.059 0.830± 0.014 Full 0.962± 0.005 0.925± 0.010 0.935± 0.008 1.758± 0.132 0.958± 0.015 0.985± 0.005
Full 0.747± 0.006 0.500± 0.021 0.830± 0.006 10 0.955± 0.020 0.914± 0.035 0.936± 0.027 0.568± 0.136 0.954± 0.037 0.956± 0.005
Full 0.737± 0.016 0.433± 0.054 0.820± 0.008 50 0.972± 0.006 0.944± 0.011 0.953± 0.009 0.560± 0.427 0.966± 0.014 0.977± 0.004
Full 0.723± 0.005 0.413± 0.019 0.817± 0.005 Full 0.974± 0.000 0.953± 0.000 0.957± 0.000 0.539± 0.437 0.967± 0.002 0.981± 0.001

U
M
T
L-
SS
L

100 0.790± 0.043 0.618± 0.105 0.856± 0.024 10 0.906± 0.002 0.925± 0.004 0.940± 0.002 0.626± 0.280 0.954± 0.006 0.953± 0.003
100 0.818± 0.039 0.688± 0.087 0.872± 0.024 50 0.919± 0.001 0.946± 0.001 0.952± 0.001 0.561± 0.115 0.962± 0.003 0.963± 0.002
100 0.852± 0.039 0.670± 0.095 0.868± 0.022 Full 0.937± 0.001 0.954± 0.001 0.958± 0.001 0.613± 0.386 0.969± 0.004 0.981± 0.002
1000 0.794± 0.020 0.630± 0.046 0.860± 0.012 10 0.893± 0.000 0.926± 0.001 0.941± 0.001 0.524± 0.107 0.961± 0.002 0.962± 0.001
1000 0.822± 0.038 0.693± 0.096 0.877± 0.026 50 0.903± 0.000 0.945± 0.000 0.952± 0.001 0.712± 0.167 0.963± 0.002 0.980± 0.002
1000 0.818± 0.005 0.707± 0.019 0.867± 0.005 Full 0.899± 0.001 0.953± 0.001 0.958± 0.001 0.724± 0.400 0.968± 0.005 0.982± 0.003
Full 0.812± 0.022 0.688± 0.050 0.870± 0.012 10 0.905± 0.005 0.921± 0.008 0.935± 0.004 0.627± 0.150 0.946± 0.014 0.973± 0.009
Full 0.813± 0.012 0.683± 0.020 0.873± 0.008 50 0.927± 0.001 0.947± 0.001 0.954± 0.001 0.397± 0.172 0.968± 0.001 0.977± 0.001
Full 0.816± 0.008 0.678± 0.019 0.873± 0.004 Full 0.935± 0.001 0.954± 0.001 0.958± 0.001 0.625± 0.208 0.970± 0.002 0.981± 0.001

U
M
T
L-
SS
L-
S

100 0.798± 0.030 0.628± 0.081 0.860± 0.018 10 0.951± 0.004 0.911± 0.008 0.935± 0.004 0.792± 0.313 0.940± 0.006 0.963± 0.006
100 0.834± 0.033 0.696± 0.074 0.874± 0.019 50 0.972± 0.001 0.946± 0.001 0.952± 0.001 0.727± 0.340 0.965± 0.002 0.977± 0.002
100 0.817± 0.036 0.688± 0.100 0.860± 0.021 Full 0.975± 0.001 0.951± 0.001 0.954± 0.001 0.812± 0.315 0.968± 0.002 0.981± 0.002
1000 0.806± 0.020 0.652± 0.055 0.872± 0.014 10 0.956± 0.002 0.916± 0.004 0.937± 0.003 0.852± 0.275 0.943± 0.005 0.966± 0.003
1000 0.808± .013 0.662± 0.038 0.862± 0.010 50 0.971± 0.000 0.944± 0.001 0.952± 0.000 0.917± 0.239 0.965± 0.002 0.978± 0.003
1000 0.801± 0.020 0.646± 0.049 0.862± 0.010 Full 0.975± 0.001 0.952± 0.001 0.954± 0.001 0.753± 0.228 0.969± 0.001 0.981± 0.001
Full 0.796± 0.033 0.632± 0.086 0.864± 0.018 10 0.960± 0.002 0.923± 0.004 0.940± 0.002 0.782± 0.229 0.954± 0.005 0.967± 0.003
Full 0.808± 0.014 0.662± 0.030 0.868± 0.007 50 0.972± 0.001 0.945± 0.001 0.953± 0.001 0.645± 0.196 0.966± 0.003 0.978± 0.003
Full 0.800± 0.016 0.632± 0.038 0.628± 0.009 Full 0.961± 0.008 0.924± 0.016 0.940± 0.009 0.392± 0.337 0.948± 0.014 0.969± 0.007

M
ul
tiM

ix

100 0.800± 0.025 0.594± 0.064 0.856± 0.015 10 0.954± 0.004 0.920± 0.008 0.938± 0.004 0.695± 0.198 0.949± 0.010 0.969± 0.007
100 0.824± 0.022 0.613± 0.056 0.854± 0.014 50 0.971± 0.001 0.943± 0.002 0.951± 0.001 0.681± 0.086 0.964± 0.003 0.976± 0.002
100 0.792± 0.035 0.593± 0.101 0.854± 0.021 Full 0.973± 0.012 0.948± 0.022 0.954± 0.015 0.636± 0.070 0.966± 0.025 0.981± 0.004
1000 0.817± 0.016 0.647± 0.038 0.865± 0.006 10 0.954± 0.004 0.910± 0.008 0.932± 0.004 0.902± 0.186 0.942± 0.005 0.968± 0.007
1000 0.825± 0.016 0.650± 0.033 0.860± 0.011 50 0.970± 0.001 0.941± 0.002 0.950± 0.001 0.811± 0.112 0.964± 0.004 0.977± 0.002
1000 0.830± 0.048 0.586± 0.138 0.856± 0.029 Full 0.974± 0.011 0.919± 0.020 0.953± 0.014 0.643± 0.126 0.933± 0.024 0.984± 0.004
Full 0.840± 0.025 0.730± 0.060 0.880± 0.016 10 0.954± 0.002 0.913± 0.004 0.935± 0.001 0.621± 0.123 0.949± 0.006 0.968± 0.006
Full 0.854± 0.022 0.760± 0.055 0.890± 0.014 50 0.972± 0.001 0.950± 0.001 0.956± 0.001 0.692± 0.036 0.970± 0.003 0.980± 0.003
Full 0.843± 0.024 0.740± 0.065 0.890± 0.017 Full 0.975± 0.000 0.952± 0.001 0.960± 0.001 0.528± 0.037 0.970± 0.001 0.982± 0.001
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Table 3: Classification and segmentation performance figures with varying label proportions
in cross-domain evaluations: NIHX (classification) and MCU (segmentation) datasets. The
best scores from fully-supervised models are underlined and the best scores from semi-
supervised models are bolded. Scores are given as mean± std.

Model |Dc
l |

Classification
|Ds

l |
Segmentation

Acc F1-Nor F1-Abn DS JS SSIM HD P R

U
-N
et

— — — — 10 0.555± 0.047 0.480± 0.053 0.680± 0.059 8.691± 1.100 0.553± 0.070 0.866± 0.032
— — — — 50 0.763± 0.026 0.736± 0.037 0.870± 0.019 2.895± 0.832 0.752± 0.035 0.887± 0.019
— — — — Full 0.838± 0.023 0.906± 0.035 0.929± 0.017 1.414± 0.529 0.793± 0.041 0.910± 0.013

En
c

100 0.352± 0.035 0.070± 0.131 0.506± 0.008 — — — — — — —
1000 0.390± 0.037 0.192± 0.124 0.508± 0.007 — — — — — — —
Full 0.434± 0.026 0.296± 0.068 0.524± 0.005 — — — — — — —

En
c-
M
M 100 0.360± 0.030 0.110± 0.065 0.500± 0.024 — — — — — — —

1000 0.406± 0.078 0.242± 0.114 0.460± 0.010 — — — — — — —
Full 0.452± 0.040 0.316± 0.068 0.502± 0.030 — — — — — — —

En
c-
SS
L 100 0.402± 0.052 0.222± 0.136 0.510± 0.012 — — — — — — —

1000 0.486± 0.050 0.380± 0.109 0.530± 0.010 — — — — — — —
Full 0.510± 0.024 0.472± 0.056 0.538± 0.004 — — — — — — —

U
M
T
L

100 0.350± 0.034 0.045± 0.123 0.510± 0.003 10 0.586± 0.023 0.708± 0.035 0.836± 0.020 7.156± 2.316 0.731± 0.032 0.950± 0.014
100 0.363± 0.029 0.085± 0.096 0.515± 0.005 50 0.580± 0.040 0.684± 0.061 0.825± 0.038 7.013± 1.576 0.697± 0.065 0.975± 0.012
100 0.342± 0.049 0.015± 0.153 0.508± 0.006 Full 0.607± 0.023 0.742± 0.037 0.863± 0.021 6.398± 1.331 0.759± 0.041 0.968± 0.007
1000 0.413± 0.004 0.263± 0.033 0.507± 0.005 10 0.676± 0.020 0.674± 0.030 0.833± 0.016 3.268± 0.768 0.712± 0.025 0.927± 0.013
1000 0.400± 0.022 0.203± 0.069 0.513± 0.005 50 0.704± 0.025 0.811± 0.040 0.896± 0.015 3.232± 0.229 0.828± 0.034 0.964± 0.014
1000 0.430± 0.041 0.293± 0.110 0.517± 0.005 Full 0.638± 0.015 0.795± 0.024 0.890± 0.013 3.893± 0.465 0.810± 0.031 0.966± 0.010
Full 0.455± 0.015 0.365± 0.038 0.525± 0.004 10 0.737± 0.037 0.765± 0.056 0.879± 0.028 0.917± 0.478 0.801± 0.059 0.930± 0.013
Full 0.444± 0.026 0.332± 0.075 0.522± 0.007 50 0.868± 0.022 0.793± 0.038 0.894± 0.014 0.742± 0.212 0.898± 0.0378 0.946± 0.004
Full 0.443± 0.038 0.328± 0.099 0.520± 0.010 Full 0.854± 0.018 0.828± 0.030 0.913± 0.012 0.792± 0.490 0.866± 0.026 0.942± 0.008

U
M
T
L-
S

100 0.344± 0.021 0.006± 0.074 0.510± 0.005 10 0.797± 0.029 0.670± 0.042 0.807± 0.027 5.754± 1.047 0.698± 0.043 0.938± 0.009
100 0.364± 0.035 0.098± 0.019 0.506± 0.006 50 0.828± 0.032 0.715± 0.049 0.826± 0.033 6.412± 1.753 0.731± 0.053 0.971± 0.009
100 0.342± 0.016 0.008± 0.070 0.510± 0.000 Full 0.838± 0.041 0.715± 0.063 0.834± 0.043 6.321± 1.573 0.740± 0.068 0.966± 0.009
1000 0.378± 0.017 0.138± 0.057 0.512± 0.007 10 0.844± 0.018 0.718± 0.027 0.854± 0.014 3.921± 0.480 0.754± 0.023 0.939± 0.011
1000 0.392± 0.024 0.186± 0.078 0.514± 0.005 50 0.883± 0.016 0.793± 0.025 0.888± 0.011 3.017± 0.191 0.821± 0.027 0.959± 0.002
1000 0.370± 0.014 0.130± 0.057 0.510± 0.000 Full 0.898± 0.016 0.831± 0.027 0.905± 0.014 4.150± 1.269 0.845± 0.031 0.970± 0.010
Full 0.470± 0.026 0.398± 0.015 0.524± 0.010 10 0.881± 0.019 0.785± 0.031 0.888± 0.014 0.862± 0.199 0.830± 0.034 0.939± 0.009
Full 0.413± 0.009 0.270± 0.008 0.510± 0.014 50 0.917± 0.009 0.848± 0.014 0.919± 0.006 0.658± 0.227 0.966± 0.012 0.888± 0.007
Full 0.433± 0.026 0.315± 0.007 0.513± 0.015 Full 0.916± 0.008 0.850± 0.013 0.921± 0.005 0.882± 0.151 0.886± 0.014 0.952± 0.002

U
M
T
L-
SS
L

100 0.442± 0.045 0.316± 0.004 0.524± 0.007 10 0.833± 0.025 0.778± 0.042 0.884± 0.019 0.895± 0.415 0.810± 0.042 0.948± 0.007
100 0.398± 0.010 0.166± 0.004 0.520± 0.019 50 0.853± 0.023 0.839± 0.038 0.907± 0.017 0.851± 0.157 0.864± 0.039 0.952± 0.007
100 0.385± 0.062 0.165± 0.006 0.515± 0.013 Full 0.841± 0.023 0.818± 0.039 0.911± 0.015 0.853± 0.410 0.854± 0.039 0.949± 0.007
1000 0.445± 0.038 0.333± 0.091 0.525± 0.005 10 0.818± 0.032 0.781± 0.051 0.892± 0.023 1.085± 0.464 0.825± 0.051 0.938± 0.008
1000 0.526± 0.080 0.486± 0.017 0.544± 0.016 50 0.826± 0.018 0.804± 0.029 0.904± 0.014 0.811± 0.137 0.792± 0.031 0.949± 0.006
1000 0.485± 0.043 0.413± 0.097 0.538± 0.008 Full 0.843± 0.010 0.837± 0.018 0.924± 0.007 0.983± 0.429 0.882± 0.016 0.953± 0.006
Full 0.526± 0.023 0.504± 0.036 0.546± 0.012 10 0.824± 0.020 0.765± 0.0312 0.873± 0.017 0.994± 0.379 0.790± 0.031 0.943± 0.010
Full 0.530± 0.030 0.514± 0.058 0.542± 0.012 50 0.867± 0.020 0.839± 0.034 0.917± 0.013 0.566± 0.282 0.881± 0.033 0.945± 0.005
Full 0.520± 0.031 0.490± 0.061 0.542± 0.007 Full 0.884± 0.011 0.884± 0.021 0.934± 0.008 0.599± 0.201 0.918± 0.021 0.955± 0.003

U
M
T
L-
SS
L-
S

100 0.370± 0.046 0.114± 0.129 0.510± 0.011 10 0.853± 0.026 0.747± 0.041 0.866± 0.019 1.048± 0.186 0.782± 0.041 0.944± 0.010
100 0.400± 0.067 0.192± 0.171 0.518± 0.012 50 0.889± 0.019 0.799± 0.031 0.899± 0.014 0.854± 0.298 0.834± 0.031 0.950± 0.006
100 0.370± 0.061 0.114± 0.159 0.514± 0.016 Full 0.915± 0.019 0.848± 0.032 0.920± 0.013 0.987± 0.328 0.880± 0.033 0.956± 0.003
1000 0.432± 0.043 0.286± 0.019 0.524± 0.010 10 0.871± 0.034 0.785± 0.054 0.884± 0.025 1.327± 0.135 0.818± 0.053 0.944± 0.008
1000 0.458± 0.077 0.342± 0.186 0.530± 0.013 50 0.893± 0.008 0.803± 0.014 0.895± 0.006 1.123± 0.215 0.835± 0.015 0.946± 0.005
1000 0.462± 0.050 0.350± 0.115 0.536± 0.014 Full 0.930± 0.008 0.860± 0.013 0.925± 0.006 1.042± 0.206 0.912± 0.013 0.955± 0.003
Full 0.482± 0.042 0.412± 0.087 0.536± 0.008 10 0.880± 0.031 0.765± 0.050 0.885± 0.022 0.745± 0.219 0.818± 0.045 0.941± 0.014
Full 0.490± 0.021 0.426± 0.041 0.540± 0.006 50 0.912± 0.014 0.845± 0.024 0.909± 0.009 0.956± 0.215 0.881± 0.025 0.952± 0.002
Full 0.510± 0.038 0.474± 0.071 0.540± 0.011 Full 0.875± 0.032 0.809± 0.053 0.875± 0.026 0.722± 0.335 0.851± 0.057 0.944± 0.008

M
ul
tiM

ix

100 0.440± 0.058 0.164± 0.019 0.510± 0.014 10 0.857± 0.028 0.732± 0.044 0.863± 0.018 1.227± 0.534 0.767± 0.044 0.943± 0.016
100 0.370± 0.086 0.036± 0.003 0.510± 0.013 50 0.889± 0.021 0.790± 0.036 0.890± 0.015 1.061± 0.434 0.866± 0.035 0.947± 0.008
100 0.500± 0.080 0.300± 0.002 0.510± 0.006 Full 0.899± 0.022 0.825± 0.036 0.906± 0.017 0.647± 0.074 0.852± 0.040 0.952± 0.012
1000 0.520± 0.041 0.386± 0.009 0.530± 0.014 10 0.862± 0.017 0.775± 0.026 0.878± 0.011 1.307± 0.325 0.816± 0.029 0.939± 0.006
1000 0.540± 0.018 0.500± 0.036 0.536± 0.005 50 0.912± 0.018 0.831± 0.031 0.907± 0.012 1.293± 0.375 0.865± 0.030 0.955± 0.007
1000 0.570± 0.088 0.620± 0.003 0.510± 0.008 Full 0.936± 0.026 0.880± 0.043 0.932± 0.022 0.803± 0.178 0.917± 0.050 0.979± 0.008
Full 0.550± 0.038 0.430± 0.006 0.534± 0.010 10 0.886± 0.013 0.802± 0.022 0.894± 0.011 0.746± 0.284 0.839± 0.028 0.948± 0.007
Full 0.560± 0.040 0.570± 0.008 0.550± 0.007 50 0.935± 0.017 0.878± 0.030 0.930± 0.012 0.515± 0.232 0.928± 0.033 0.957± 0.005
Full 0.520± 0.022 0.490± 0.064 0.550± 0.008 Full 0.943± 0.009 0.892± 0.015 0.937± 0.006 0.417± 0.181 0.928± 0.016 0.958± 0.002

11



Haque, Imran, Wang and Terzopoulos

U
-N

et
-1

0
U

-N
et

-5
0

U
-N

et
-F

ul
l

U
M

TL
-1

0-
10

0
U

M
TL

-1
0-

10
00

U
M

TL
-1

0-
Fu

ll
U

M
TL

-5
0-

10
0

U
M

TL
-5

0-
10

00
U

M
TL

-5
0-

Fu
ll

U
M

TL
-F

ul
l-1

00
U

M
TL

-F
ul

l-1
00

0
U

M
TL

-F
ul

l-F
ul

l
U

M
TL

S
-1

0-
10

0
U

M
TL

S
-1

0-
10

00
U

M
TL

S
-1

0-
Fu

ll
U

M
TL

S
-5

0-
10

0
U

M
TL

S
-5

0-
10

00
U

M
TL

S
-5

0-
Fu

ll
U

M
TL

S
-F

ul
l-1

00
U

M
TL

S
-F

ul
l-1

00
0

U
M

TL
S

-F
ul

l-F
ul

l
M

ul
tiM

ix
-1

0-
10

0
M

ul
tiM

ix
-1

0-
10

00
M

ul
tiM

ix
-1

0-
Fu

ll
M

ul
tiM

ix
-5

0-
10

0
M

ul
tiM

ix
-5

0-
10

00
M

ul
tiM

ix
-5

0-
Fu

ll
M

ul
tiM

ix
-F

ul
l-1

00
M

ul
tiM

ix
-F

ul
l-1

00
0

M
ul

tiM
ix

-F
ul

l-F
ul

l

0.6

0.7

0.8

0.9

1.0
D

ic
e 

S
co

re
s

(a) in-domain
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(b) cross-domain

Figure 3: Distributions of the Dice scores demonstrate the superiority of the MultiMix model
over the baseline models in segmenting lungs from the chest X-ray images in both domains.

MultiMix model. The improvement in Dice scores of MultiMix with minimal supervision
over the segmentation baselines of U-Net, UMTL, and UMTL-S is statistically significant
(p < 0.05), confirming the quantitative efficacy of MultiMix. Figure 3 shows improved and
consistent segmentation performance by the MultiMix model over the baselines. For a fair
comparison, we used the same backbone U-Net and the same classification branch for all
the models.

In Figure 4, the segmented lung boundary visualizations also show good agreement with
the reference masks by MultiMix over the other models (also see Appendix B). For both the
in-domain and cross-domain segmentations, we observe that the predicted boundaries are
almost identical with the reference boundaries, as they substantially overlap. Moreover, the
noise in the predictions is mitigated with the introduction of each additional component into
the intermediate models, which justifies the value of those components in the MultiMix model.
The good agreement between the ground truth lung masks and the MultiMix predicted
segmentation masks is confirmed by the Bland-Altman plots for varying quantities of labeled
data, shown in Figure 5a.

The generalization test through the cross-domain datasets (MCU and NIHX) demon-
strates the effectiveness of the MultiMix model. It consistently performs well against both
domains with improved generalizability in either task. As reported in Table 3, the perfor-
mance of MultiMix is as promising as in the in-domain evaluations. MultiMix achieved better
scores in the classification task over all the baseline models. Due to the significant differences
in the NIHX and CheX datasets, the scores are not as good as the in-domain results, yet our
model performs significantly better than the other classification models Enc, Enc-SSL, and
UMTL (p < 0.05). For the segmentation task, our MultiMix model again achieved better
scores in all the various metrics, with improved consistency over the baselines (Figure 3).
Just like for the in-domain results, MultiMix shows significant improvements in Dice scores
over the segmentation baselines U-Net, UMTL, and UMTL-S (p < 0.05), thus proving the
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Ground Truth

|Ds| = 10 |Ds| = 50 |Ds| = Full

U-Net

UMTL

UMTLS

UMTL-SSL

UMTL-SSL-S

MultiMix

(a) JSRT (in-domain)

Ground Truth

|Ds| = 10 |Ds| = 50 |Ds| = Full

U-Net

UMTL

UMTLS

UMTL-SSL

UMTL-SSL-S

MultiMix

(b) MCU (cross-domain)

Figure 4: Visualization of the ground truth reference (green) and predicted (red) segmentation
boundaries in a chest X-ray reveals the superiority of MultiMix.
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(a) in-domain

(b) cross-domain

Figure 5: Bland-Altman plots at varying training labels show good agreement between the
number of ground truth pixels and MultiMix-predicted pixels for the (a) in-domain and (b)
cross-domain evaluations, as well as consistent improvement with increasing quantities of
labeled data.
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(a) in-domain (b) cross-domain

Figure 6: Classification accuracies of different supervised and semi-supervised baselines at
different training datasizes. The in-domain and cross-domain plots show that MultiMix has
higher accuracy and consistency over the baselines.
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Figure 7: ROC curves for supervised and semi-supervised baselines with 50 segmentation
labels show higher AUC values from our MultiMix for in-domain and cross-domain evalua-
tions.

generalizability of our method. The Bland-Altman plots in Figure 5b for the MultiMix
model in the cross-domain segmentation evaluations with varying quantities of labeled data
confirms the observed good agreement between the ground truth lung segmentation masks
and the MultiMix-predicted segmentation masks.

Figure 6 demonstrates the superiority and better consistency of our MultiMix models
over the baselines in classifying normal and abnormal (pneumonia) X-rays. Figure 7 further
showcases the superior classification performance of MultiMix over the baseline single-task
and multi-task models. Figure 6 and Figure 7 together show that MultiMix outperforms all
baselines in many different metrics, as the Accuracy and Area Under Curve (AUC) values
confirm the superiority of the MultiMix model. With regard to the cross-domain ROC
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curves, however, although MultiMix has the best relative performance when compared to
the baselines, the absolute performance of the algorithm indicates room for improvement.

4. Conclusions

We have presented MultiMix, a novel semi-supervised, multi-task learning model that jointly
learns classification and segmentation tasks. Through the incorporation of confidence-guided
data augmentation and a novel saliency bridge module, MultiMix performs improved and
consistent pneumonia detection and lung segmentation when trained on multi-source chest
X-ray datasets with varying quantities of ground truth labels. Our thorough experimentation
using four different chest X-ray datasets demonstrated the effectiveness of MultiMix both in
in-domain and cross-domain evaluations, for both tasks; in fact, outperforming a number of
baseline models.

Beyond chest X-rays—which is the most frequently performed radiologic procedure
worldwide, comprising 40% of all imaging tests, or 1.4 billion annually (World Health
Organization, 2016)—our future work will focus on generalizing the MultiMix concept,
particularly the saliency bridge module, to other applications and imaging modalities,
including volumetric images.
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Appendix A. Model Architecture

Architectural details of the MultiMix model are presented in Table 4 for the encoder network
and in Table 5 for the decoder network. The encoder and decoder incorporate double-
convolution blocks; the encoder has 5 blocks and the decoder has 4. Each block includes a
2D convolutional layer, an instance normalization layer, and a Leaky ReLU activation, and
this sequence repeats in each block.

In the encoder, each double-convolution block is followed by a dropout layer and a
maxpooling layer. The encoder finally branches to a classification branch, which includes
a maxpooling layer (5), an average pooling layer, followed by a fully-connected layer for
classification prediction.

The decoder begins with an upsampling layer. Next, in the first double-convolution
layer, the downsampled saliency maps and original inputs are concatenated. The increase in
dimensions at the beginning of each decoder block are due to the skip connections. These
convolutional layers are also followed by a dropout layer. This sequence is repeated for 3
more layers. To output the final segmentation prediction, the decoder finishes with a single
convolutional layer that downsamples to a single channel.

Appendix B. Segmentation Visualization

Figure 8 shows the ground truth lung masks and masks predicted by the MultiMix model
(MultiMix-50-1000) for a number of images from the JSRT dataset (in-domain) and MCU
dataset (cross-domain). Both parts of the figure display the accuracy in the predicted
segmentation masks, both in-domain and cross-domain, as there is almost no noise in these
predictions, proving the effectiveness of our algorithm even when being trained with limited
labeled data.

Appendix C. Saliency Visualization

Figure 9 shows the class-specific saliency maps generated by our MultiMix-50-1000 model for
both in-domain and cross-domain classification data (Xc). The maps consistently highlight
particular regions in the input X-rays for the Normal and Pneumonia classes. Similarly,
Figure 10 shows the saliency maps for the in-domain and cross-domain segmentation data
(Xs). While the class labels are not available, two distinct types of saliency maps are
generated like for the classification data.

Class-specific saliency maps generated for images in X
c consistently highlight regions

responsible for predicting the particular classes of the images (Figure 9), enabling the use of
these maps to improve the segmentation of images in X

s (Figure 10).
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Table 4: Architectural details of the MultiMix Encoder for minibatch size m.

Name Input Feature Maps Output Feature Maps

Conv layer - 1 m× 256× 256× 1 m× 256× 256× 16
InstanceNorm - 1 m× 256× 256× 16 m× 256× 256× 16
LReLU - 1 m× 256× 256× 16 m× 256× 256× 16
Conv Layer - 2 m× 256× 256× 16 m× 256× 256× 16
InstanceNorm - 2 m× 256× 256× 16 m× 256× 256× 16
LReLU - 2 m× 256× 256× 16 m× 256× 256× 16
Dropout - 1 m× 256× 256× 16 m× 256× 256× 16
Maxpool - 1 m× 256× 256× 16 m× 128× 128× 16
Conv Layer - 3 m× 128× 128× 16 m× 128× 128× 32
InstanceNorm - 3 m× 128× 128× 32 m× 128× 128× 32
LReLU - 3 m× 128× 128× 32 m× 128× 128× 32
Conv Layer - 4 m× 128× 128× 32 m× 128× 128× 32
InstanceNorm - 4 m× 128× 128× 32 m× 128× 128× 32
LReLU - 4 m× 128× 128× 32 m× 128× 128× 32
Dropout - 2 m× 128× 128× 32 m× 128× 128× 32
Maxpool - 2 m× 128× 128× 32 m× 64× 64× 32
Conv Layer - 5 m× 64× 64× 32 m× 64× 64× 64
InstanceNorm - 5 m× 64× 64× 64 m× 64× 64× 64
LReLU - 5 m× 64× 64× 64 m× 64× 64× 64
Conv Layer - 6 m× 64× 64× 64 m× 64× 64× 64
InstanceNorm - 6 m× 64× 64× 64 m× 64× 64× 64
LReLU - 6 m× 64× 64× 64 m× 64× 64× 64
Dropout - 3 m× 64× 64× 64 m× 64× 64× 64
Maxpool - 3 m× 64× 64× 64 m× 32× 32× 64
Conv Layer - 7 m× 32× 32× 64 m× 32× 32× 128
InstanceNorm - 7 m× 32× 32× 128 m× 32× 32× 128
LReLU - 7 m× 32× 32× 128 m× 32× 32× 128
Conv Layer - 8 m× 32× 32× 128 m× 32× 32× 128
InstanceNorm - 8 m× 32× 32× 128 m× 32× 32× 128
LReLU - 8 m× 32× 32× 128 m× 32× 32× 128
Dropout - 4 m× 32× 32× 128 m× 32× 32× 128
Maxpool - 4 m× 32× 32× 128 m× 16× 16× 128
Conv Layer - 9 m× 16× 16× 128 m× 16× 16× 256
InstanceNorm - 9 m× 16× 16× 256 m× 16× 16× 256
LReLU - 9 m× 16× 16× 256 m× 16× 16× 256
Conv Layer - 10 m× 16× 16× 256 m× 16× 16× 256
InstanceNorm - 10 m× 16× 16× 256 m× 16× 16× 256
LReLU - 10 m× 16× 16× 256 m× 16× 16× 256
Dropout - 5 m× 16× 16× 256 m× 16× 16× 256
Maxpool - 5 m× 16× 16× 256 m× 8× 8× 256
Avgpool m× 8× 8× 256 m× 1× 1× 256
GAP m× 1× 1× 256 m× 256
Fully Connected Layer m× 256 m× 2
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Table 5: Architectural details of the MultiMix Decoder for minibatch size m.

Name Input Feature Maps Output Feature Maps

Upsample - 1 m× 16× 16× 256 m× 32× 32× 256
Conv Layer - 1 m× 32× 32× 386 m× 32× 32× 128
InstanceNorm - 1 m× 32× 32× 128 m× 32× 32× 128
LReLU - 1 m× 32× 32× 128 m× 32× 32× 128
Conv Layer - 2 m× 32× 32× 128 m× 32× 32× 128
InstanceNorm - 2 m× 32× 32× 128 m× 32× 32× 128
LReLU - 2 m× 32× 32× 128 m× 32× 32× 128
Dropout - 1 m× 32× 32× 128 m× 32× 32× 128
Upsample - 2 m× 32× 32× 128 m× 64× 64× 128
Conv Layer - 3 m× 64× 64× 192 m× 64× 64× 64
InstanceNorm - 3 m× 64× 64× 64 m× 64× 64× 64
LReLU - 3 m× 64× 64× 64 m× 64× 64× 64
Conv Layer - 4 m× 64× 64× 64 m× 64× 64× 64
InstanceNorm - 4 m× 64× 64× 64 m× 64× 64× 64
LReLU - 4 m× 64× 64× 64 m× 64× 64× 64
Dropout - 2 m× 64× 64× 64 m× 64× 64× 64
Upsample - 3 m× 64× 64× 64 m× 128× 128× 64
Conv Layer - 5 m× 128× 128× 96 m× 128× 128× 32
InstanceNorm - 5 m× 128× 128× 32 m× 128× 128× 32
LReLU - 5 m× 128× 128× 32 m× 128× 128× 32
Conv Layer - 6 m× 128× 128× 32 m× 128× 128× 32
InstanceNorm - 6 m× 128× 128× 32 m× 128× 128× 32
LReLU - 6 m× 128× 128× 32 m× 128× 128× 32
Dropout - 3 m× 128× 128× 32 m× 128× 128× 32
Upsample - 4 m× 128× 128× 32 m× 256× 256× 32
Conv Layer - 7 m× 256× 256× 48 m× 256× 256× 16
InstanceNorm - 7 m× 256× 256× 16 m× 256× 256× 16
LReLU - 7 m× 256× 256× 16 m× 256× 256× 16
Conv Layer - 8 m× 256× 256× 16 m× 256× 256× 16
InstanceNorm - 8 m× 256× 256× 16 m× 256× 256× 16
LReLU - 8 m× 256× 256× 16 m× 256× 256× 16
Dropout - 4 m× 256× 256× 16 m× 256× 256× 16
Final Conv Layer m× 256× 256× 16 m× 256× 256× 1
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Image Ground Truth Prediction

(a) JSRT (in-domain)

Image Ground Truth Prediction

(b) MCU (cross-domain)

Figure 8: Visualizations of the segmented lung masks by MultiMix-50-1000 on the in-domain
JSRT dataset and cross-domain MCU dataset. The results show good agreement between
the groundtruth and predicted masks.
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Image Saliency Map

Normal

Pneumonia

(a) CheX (in-domain)

Image Saliency Map

Normal

Pneumonia

(b) NIHX (cross-domain)

Figure 9: Examples from X
c. Class-specific MultiMix saliency maps highlight crucial regions

in the input X-ray images in detecting pneumonia, demonstrating the effective predictions
by the classifier and providing useful information for improved segmentation.
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Image Saliency Map

(a) JSRT (in-domain)

Image Saliency Map

(b) MCU (cross-domain)

Figure 10: Examples from X
s. MultiMix saliency maps consistently highlight the crucial

regions in the input X-ray images, thus providing useful information for improved segmenta-
tion.
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