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Abstract

Congenital heart disease is the most common group of congenital malformations, affecting
6 − 11 per 1000 newborns. In this work, an automated framework for detection of car-
diac anomalies during ultrasound screening is proposed and evaluated on the example of
Hypoplastic Left Heart Syndrome (HLHS), a sub-category of congenital heart disease. We
propose an unsupervised approach that learns healthy anatomy exclusively from clinically
confirmed normal control patients. We evaluate a number of known anomaly detection
frameworks together with a model architecture based on the α-GAN network and find
evidence that the proposed model performs significantly better than the state-of-the-art
in image-based anomaly detection, yielding average 0.81 AUC and a better robustness
towards initialisation compared to previous works.

Keywords: fetal screening, detection, unsupervised learning

1. Introduction

A contemporary key element in building automated pathology detection systems with ma-
chine learning in medical imaging is the availability and accessibility of a sufficient amount of
data in order to train supervised discriminator models for accurate results. This is a problem
in medical imaging applications, where data accessibility is scarce because of regulatory con-
straints and economic considerations. To build truly useful diagnostic systems, supervised
machine learning methods would require a large amount of data and manual labelling effort
for every possible disease to minimise false predictions. This is unrealistic because there
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are thousands of diseases, some represented only by a few patients ever recorded. Thus,
learning representations from healthy anatomy and using anomaly detection to flag unusual
image features for further investigation defines a more reasonable paradigm for medicine,
especially in high-throughput settings like population screening, e.g. fetal ultrasound imag-
ing. However, anomaly detection suffers from the great variability of healthy anatomical
structures from one individual to another within patient populations as well as from the
many, often subtle, variants and variations of pathologies. Many medical imaging datasets,
e.g. volunteer studies like UK Biobank (Petersen et al., 2013), consist of images from pre-
dominantly healthy subjects with a small proportion of them belonging to abnormal cases.
Thus, an anomaly detection approach or ’normative’ learning paradigm is also reasonable
from a practical point of view for applications like quality control within massive data lakes.

In this work, we formulate the detection of congenital heart disease as an anomaly de-
tection task for fetal screening with ultrasound imaging. We utilise normal control data
to learn the normative feature distribution which characterises healthy hearts and distin-
guishes them from fetuses with hypoplastic left heart syndrome (HLHS). We chose this test
pathology because of our access to a well labelled image database from this domain. The-
oretically, our method could be evaluated on any congenital heart disease that is visible in
the four-chamber view of the heart (NHS, 2015).

Contribution: To the best of our knowledge we propose the first unsupervised working
anomaly detection approach for fetal ultrasound screening using only normal samples during
training. Previous approaches rely on supervised (Arnaout et al., 2020) discrimination of
known diseases, which makes them prone to errors when confronted with unseen classes.
Our method extends the α-GAN architecture with attention mechanisms and we propose an
anomaly score which is based on reconstruction and localisation capabilities of the model. We
evaluate our method on a selected congenital heart disease, which can be overlooked during
clinical screening examinations in between 30-40% of scans (Chew et al., 2007), and compare
to other state-of-the-art methods in image-based anomaly detection. We show evidence that
the proposed method outperforms state-of-the-art models and achieves promising results for
unsupervised detection of pathologies in fetal ultrasound screening.

2. Background and Related Work

2.1 Pathological Diseases in Fetal Heart

Congenital heart disease (CHD) is the most common group of congenital malformations
(Bennasar et al., 2010)(Yeo et al., 2018)(van Velzen et al., 2016). CHD is a defect in the
structure of the heart or great vessels that is present at birth. Approximately 6 − 11 per
1000 newborns are affected. 20− 30% of these heart defects require surgery within the first
year of life (Yeo et al., 2018). In order to detect the disease, the most common approach is
the standard anomaly ultrasound scan at approximately 20 weeks of gestation (e.g. 18+0
to 20+6 weeks in the UK). In contemporary screening pathways, i.e., 2D ultrasound at
GA 12 and 24, the prenatal detection rate of CHD is in a range of 39 − 59%. (Pinto
et al., 2012) (van Velzen et al., 2016) In (Yeo et al., 2018), algorithmic support has been
used to find diagnostically informative fetal cardiac views. With this aid, clinical experts
have been shown to discriminate healthy controls from CHD cases with 98% sensitivity and
90% specificity in 4D ultrasound. However, 4D ultrasound is not commonly used during
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Unsupervised Detection of Hypoplastic Left Heart Syndrome

fetal screening and in the proposed teleradiology setup still all images have to be manually
assessed by highly experienced experts to achieve such a high performance.

In this work we focus on a subtype of CHD, Hypoplastic Left Heart Syndrome (HLHS).
Examples of HLHS in comparison with healthy fetal hearts are presented in Figure 1. HLHS
is rare, but is one of the most prominent pathologies in our cohort. In HLHS the four
chamber view is usually grossly abnormal, allowing the identification of CHD (although not
necessarily a detailed diagnosis) from a single image plane. A condition that is identifiable
on a single view plane provides a clear case study for our proposed method. If HLHS is
identified during pregnancy, provisions for the appropriate timing and location of delivery
can be made, allowing immediate treatment of the affected infant to be instigated after birth.
Postnatal palliative surgery is possible for HLHS, and the antenatal diagnosis of CHD in
general has been shown to result in a reduced mortality compared to those infants diagnosed
with CHD only after birth (Holland et al.). However, the detection of this pathology during
routine screening still remains challenging. Screening scans are performed by front-line-of-
care sonographers with varying degrees of experience and the examination is influenced by
factors such as fetal motion and the small size of the fetal heart.

Figure 1: Examples of four-chamber views of the fetal heart. A shows a normal fetal heart,
with the normal sized LV (left ventricle) marked (dashed white arrow). B and C show two
examples of fetal HLHS (hypoplastic left heart syndrome), with the hypoplastic LV marked
(solid white arrow). Example B represents the mitral stenosis / aortic atresia subtype, with
a severely hypoplastic, globular LV. Example C represents the mitral atresia / aortic atresia
subtype, with a slit-like LV that is difficult to identify. * marks the right ventricle in each
case.

2.2 One-class anomaly detection methods in Medical Imaging

One-class classification is a case of multi-class classification where the data is from a single
class. The main goal is to learn either a representation or a classifier (or a combination
of both) in order to distinguish and recognise out-of-distribution samples during inference.
Discriminative as well as generative methods have been proposed utilizing deep learning, for
example one class CNN (Oza and Patel, 2019) and Deep SVDD (Ruff et al., 2018). Usually
these methods utilise loss functions, similar to those of OC-SVM (Schölkopf et al., 2001) and
SVDD (Tax and Duin, 2004) or use regularisation techniques to make conventional neural
networks compatible to one-class classification models (Perera et al., 2021). Generative
models are mostly based on autoencoders or Generative Adversarial Networks. In this work
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we mainly focus on the application of generative adversarial networks for anomaly detection
in medical imaging.

Generative adversarial networks for anomaly detection were first proposed by (Schlegl
et al., 2017). In (Schlegl et al., 2017), a deep convolutional generative adversarial network,
inspired by DCGAN as proposed by (Radford et al., 2016), is used as AnoGAN. During the
training phase, only healthy samples are used. This approach consists of two models. A
generator, which generates an image from random noise and a discriminator, which classi-
fies real or fake samples as common in GANs. More specifically, the generator learns the
mapping from the uniformly distributed input noise sampled from the latent space to the
2D image space of healthy data. The output of the discriminator is a single value, which is
interpreted as the probability of an image to be real or generated by the generator network.
In their work, a residual loss is introduced, which is defined as the l1 norm between the
real images and the generated image. This enforces the visual similarity between the initial
image and the generated one. Furthermore, in order to cope with GAN instability, instead
of optimizing the parameters of the generator via maximizing the discriminator’s output
on generated examples, the generator is forced to generate data whose intermediate feature
representation of the discriminator (DH) is similar to those of real images. This is defined
as the l1 norm between intermediate feature representations of the discriminator given as
input the real image and the generate image respectively. In AnoGAN, an anomaly score is
defined as the loss function at the last iteration, i.e., the residual error plus the discrimina-
tion error. AnoGAN has been tested on a high-resolution SD-OCT dataset. For evaluation
purposes, the authors report receiver operating characteristic (ROC) curves of the corre-
sponding anomaly detection performance on image level. Based on their results, using the
residual loss alone already yields good results for anomaly detection. The combination with
the discriminator loss improves the overall performance slightly. During testing, an iterative
search in the latent space is used in order to find the closest latent vector that reconstructs
the real test image better. This is a time consuming procedure and this optimisation process
can get stuck in local minima.

Similar to AnoGAN, a faster approach, f-AnoGAN has been proposed in (Schlegl et al.,
2019). In this work, the authors train a GAN on normal images, however instead of the
DCGAN model a Wasserstein GAN (WGAN) (Arjovsky et al., 2017)(Gulrajani et al., 2017)
has been used. Initially, a WGAN is trained in order to learn a non-linear mapping from
latent space to the image space domain. Generator and discriminator are optimised simul-
taneously. Samples that follow the data distribution are generated through the generator,
given input noise sampled from the latent space. Then an encoder (convolutional autoen-
coder) is training to learn a map from image space to latent space. For the training of the
encoder, different approaches are followed, i.e training an encoder with generated images
(z-to-z approach-ziz ), training an encoder with real images (an image-to-image mapping
approach -izi) and training a discriminator guided izi encoder (izif ). As anomaly score,
image reconstruction residual plus the residual of the discriminator’s feature representation
(DH) is used. The method is evaluated on optical coherence tomography imaging data of
the retina. Both (Schlegl et al., 2017) as well as (Schlegl et al., 2019) use image patches for
training and are modular methods which are not trained in an end-to-end fashion.

Another GAN-based method applied to OCT data has been proposed by (Zhou et al.,
2020), in which authors propose a Sparsity-constrained Generative Adversarial Network
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(Sparse-GAN), a network based on an Image-to-Image GAN (Isola et al., 2017). Sparse-
GAN consists of a generator, following the same approach as in (Isola et al., 2017), and a
discriminator. Features in the latent space are constrained using a Sparsity Regularizer Net.
The model is optimized with a reconstruction loss combined with an adversarial loss. The
anomaly score is computed in the latent space and not in image space. Furthermore, an
Anomaly Activation Map (AAM) is proposed to visualise lesions.

Subsequently, AnoVAEGAN (Baur et al., 2018) has been proposed, in which the authors
discuss a spatial variational autoencoder and a discriminator. It is applied to high resolution
MRI images for unsupervised lesion segmentation. AnoVAEGAN uses a variational autoen-
coder and tries to model the normal data distribution that will lead the model to fully
reconstruct the healthy data while it is expected to fail reconstructing abnormal samples.
The discriminator classifies the inputs as real or reconstructed data. As anomaly score the
l1 norm of the original image and the reconstructed image is used.

Opposite to reconstruction-based anomaly detection methods as they are discussed
above, in (Shen et al., 2020) adGAN, an alternative framework based on GANs, is pro-
posed. The authors introduce two key components: fake pool generation and concentration
loss. adGAN follows the structure of WGAN and consists of a generator and discriminator.
The WGAN is first trained with gradient penalty using healthy images only and after a
number of iterations a pool of fake images is collected from the current generator. Then a
discriminator is retrained using the initial set of healthy data as well as the generated im-
ages in the fake pool with a concentration loss function. Concentration loss is a combination
of the traditional WGAN loss function with a concentration term which aims to decrease
the within-class distance of normal data. The output of the discriminator is considered as
anomaly score. The method is applied to skin lesion detection and brain lesion detection.
Two other methods that utilise discriminator outputs as anomaly score, however not tested
for medical imaging, are ALOOC (Sabokrou et al., 2018) and fenceGAN (Ngo et al., 2019).
In ALOOC (Sabokrou et al., 2018), the discriminator’s probabilistic output is utilised as
abnormality score. In their work an encoder-decoder is used for reconstruction while the
discriminator tries to differentiate the reconstructed images from the original ones. An ex-
tension of the ALOOC algorithm, is the Old is Gold (OGN) algorithm which is presented
in (Zaheer et al., 2020). After training a framework similar to ALOOC, the authors fine-
tune the network using two different types of fake images which are bad quality images and
pseudo anomaly images. In this way they try to boost the ability of the discriminator to
differentiate normal images from abnormal ones.

In (Ngo et al., 2019) the authors propose an encirclement loss that places the generated
images at the boundary of the distribution and then use the discriminator in order to
distinguish anomalous images. They propose this loss with the idea that a conventional
GAN objective encourages the distribution of generated images to overlap with real images.

In (Gong et al., 2020) an approach based on the ALOOC algorithm is proposed for
the detection of fetal congenital heart disease. However, during training both normal and
abnormal samples are available, which is one of the key differences compared to our approach
where only healthy subjects are utilised. Furthermore, additional to the encoder-decoder
and discriminator networks which are used in ALOOC, they use two additional noise models
of the same architecture where the input is an image plus Gaussian noise (x̃) in order to make
their encoder-decoder networks more robust to distortions. In (Perera et al., 2019) a one-
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class generative adversarial network (OCGAN) is proposed for anomaly detection. OCGAN
consists of two discriminators, a visual and a latent discriminator, a reconstruction network
(denoising autoencoder) and a classifier. The latent discriminator learns to discriminate
encoded real images and generated images randomly sampled from U ∼ (−1, 1), while the
visual discriminator distinguishes real from fake images. Their classifier is trained using
binary cross entropy loss and learns to recognise real images from fake images. Finally,
in (Pidhorskyi et al., 2018) a probabilistic framework is proposed which is based on a model
similar to α-GAN. The latent space is forced to be similar to standard normal distribution
through an extra discriminator network, called latent discriminator similar to (Rosca et al.,
2017). A parameterized data manifold is defined (using adversarial autoencoder) which
captures the underlying structure of the inlier distribution (normal data) and a test sample
is considered as abnormal if its probability with respect to the inlier distribution is below
a threshold. The probability is factorised with respect to local coordinates of the manifold
tangent space.
A summary of the key features for the works above is given in Table 1.
To establish consistency between different related works we define x as a test image, x̂
as a reconstructed image, D as a discriminator network, (DH as (intermediate) feature
representation of a Discriminator network), E as an encoder network (image space→ latent
space), De as a decoder network (latent space back to image space), G as a generator network
(where input is a noise vector), z as latent space representation and λ as a fixed learning
rate.

Table 1: One-class anomaly detection using Generative Adversarial Networks

Reference Approach Anomaly score Dataset

AnoGAN (Schlegl et al., 2017) reconstruction & discrimination score (1− λ)‖x−G(z)‖+ λ‖DH(x)−DH(G(z))‖ OCT
f-AnoGAN (Schlegl et al., 2019) reconstruction & discrimination score ‖x−G(E(x)))‖2 + λ‖DH(x)−DH(G(E(x)))‖2 OCT
Sparse-GAN (Zhou et al., 2020) reconstruction error ‖E(x)− E(De(E(x)))‖2 OCT
AnoVAEGAN (Baur et al., 2018) reconstruction error ‖x−De(E(x))‖1 Brain

adGAN (Shen et al., 2020) discriminator score D(x) Digit/skin/Brain
*ALOOC (Sabokrou et al., 2018) discriminator score D(De(E(x))) Generic Images/Video

*fenceGAN (Ngo et al., 2019) discriminator score D(x) Generic Images
*OGN (Zaheer et al., 2020) discriminator score D(De(E(x))) Generic Images/Video

*OCGAN (Perera et al., 2019) discriminator/reconstruction score D(De(E(x)))/‖x−De(E(x))|2 Generic Images
*GPND (Pidhorskyi et al., 2018) probabilistic score px(x) Generic Images

* Application field of these works as they are described in the original papers is not the Medical Imaging.

3. Methods

In order to detect anomalies in fetal ultrasound data, we build an end-to-end model which
takes as input the whole image and produces an anomaly score together with an attention
map in a unsupervised way.

To achieve this, we build a GAN-based model, where the aim of the discriminator net-
works is to learn the salient features of the fetal images (i.e., heart area) during training. We
use an auto-encoding generative adversarial network (α-GAN) which makes use of discrimi-
nator information in order to predict the anomaly score. α-GAN (Rosca et al., 2017)(Kwon
et al., 2019) is a fusion of generative adversarial learning (GAN) and a variational autoen-
coder. It can be considered as autoencoder GAN combining the reconstruction power of
an autoencoder with the sampling power of generative adversarial networks. It aims to
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overcome GAN instabilities during training, which leads to mode collapse while at the same
time exploits the advantages of variational autoencoders, producing less blurry images. In
α-GAN two discriminators focus on the data and latent space respectively. An overview of
the proposed architecture is given in Figure 2

Figure 2: Our proposed GAN-based model.

Input: fetal ultrasound image x, parameter λ, Number of Epochs: N
Output: Models:E,G,D,LD

1: for epoch 1 to N do

2: Update E,G using Eqs. 1, 2, 3. D,LD are fixed.
* L{.} indicates the loss function of each network

3: LE ← λ‖x− x̂‖1 + LD(ẑ, 1)
4: LG ← λ‖x− x̂‖1 +D(x̂, 1) +D(x̃, 1)
5: LE,G ← LE + LG

6: Update D using Eq. 4. E,G,LD are fixed.
7: LD ← D(x, 1) +D(x̂, 0) +D(x̃, 0)
8: Update LD using Eq. 5. E,G,D are fixed.
9: LLD ← LD(ẑ, 0) + LD(z, 1)

10: end for

* G,D,LD,E indicates the corresponding outputs of each network. 1/0 corresponds to real/fake
values.

Algorithm 1: Training procedure of the proposed method.
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We assume a generating process of real fetal cardiac images x as x ∼ p∗x and a random
prior distribution pz. Reconstruction, x̂ , of an input image x is defined as G(ẑ) where ẑ is
a sample from the variational distribution qE , i.e., ẑ ∼ qE(z|x). Furthermore, we define z as
a sample from a normal prior distribution pz, i.e., z ∼ N (0, I).

The encoder (E) is mapping each real sample x from sample space X to a point
in the latent space Z, i.e., E : X → Z. It consists of four blocks. Each block con-
tains a Convolutional-Batch Normalisation layer followed by Leaky Rectified Linear Unit
(LeakyReLU) activation, down-sampling the resolution of data by two in each block. Spec-
tral Normalisation (Miyato et al., 2018), (Zhang et al., 2019) a weight normalisation method,
is used after each convolutional layer. In the last block, after the convolutional layer, an
attention gate is introduced (Schlemper et al., 2019), (Zhang et al., 2019). The final layer
of the encoder is a tangent layer. The dimension of the latent space is equal to 128.

The generator synthesises images from latent space Z back to the sample space X, i.e.,
G : Z → X. The generator regenerates the initial image using four consecutive blocks of
transposed convolution-batch normalisation-Rectified Linear Unit (ReLU) activation lay-
ers. The last layer is a Hyperbolic tangent (tanh) activation. Similar to encoder spectral
normalisation, attention gate layers are used.

The discriminator (D) takes as input an image and tries to discriminate between real
and fake images. The output of the discriminator is a probability for the input being a
real or fake image. It consists of four blocks. Each block consists of Convolutional-Batch
Normalisation-RELU layers. The last layer is a sigmoid layer. The discriminator treats x as
real images while the reconstruction from the encoder and samples from pz, are considered
as fake.

A latent discriminator is introduced in order to discriminate latent representations which
are generated by the encoder network from samples of a standard Gaussian distribution.
The latent code discriminator (LD) consists of four linear layers followed by a Leaky RELU
activation. We randomly initialise the encoder, generator and latent code discriminator.
The weights for the discriminator are initialised with a normal distribution N ∼ (0, 0.02).
We train the architecture by first updating the encoder parameters by minimizing:

LE = Ep∗x [λ× ‖x− x̂‖1 + (−log(LD(ẑ)))] (1)

We define the generator loss as:

LG = Ep∗x [λ× ‖x− x̂‖1 + (−log(D(G(ẑ))))] + Epz [−log(D(G(z)))] (2)

Since we consider encoder and generator as one network the loss for the encoder-generator
is:

LE,G = LE + LG (3)

where LE and LG are defined in Eqs. 1 and 2 respectively. The generator is updating twice
compared to the encoder in order to stabilize the training procedure.

Then we minimise discriminator loss

LD = Ep∗x [−2 ∗ logD(x)− log (1−D(G(ẑ)))] + Epz [− log (1−D(G(z)))]. (4)
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Finally, we update the weights of latent code discriminator using

LLD = Ep∗x [− log (1− LD(ẑ))] + Epz [− log(LD(z))]. (5)

For the learning rate λ, we use value of 25 after grid search.

The training process of the α-GAN model is described in algorithm 1. The networks are
trained using the Adam optimizer. Encoder and Generator use the same learning rate, λ.
The same learning rate is also utilised for discriminator and latent code discriminator.

We additionally replace the latent discriminator with an approximation of KL divergence.
For a latent vector ẑ of M dimension we define KL divergence as (Ulyanov et al., 2018):

KL(q(ẑ|x)||N (0, I)) ≈ −
M

2
+

1

M

M∑

i=1

s2i +m2
i

2
− log(si),

where mi and si is the mean and standard deviation of each component of the Mth dimen-
sional latent space. Performance in this configuration is subpar, thus we limit the discussion
to results with the latent code discriminator.

Furthermore, we apply an analytic estimation of KL divergence using a one-class varia-
tional autoencoder (VAE-GAN) similar to (Baur et al., 2018) (Dosovitskiy and Brox, 2016).
The VAE-GAN is trained using reconstruction error plus the KL divergence between the
latent space (ẑ) and the normal distribution pz. For training the VAE-GAN, we first update
the encoder and decoder networks as following:

LE = Ep∗x [β ∗ ‖x− x̂‖p] +KL(q(ẑ|x)||pz)

LG = Ep∗x [γ × ‖x− x̂‖p + (−log(D(G(ẑ))))] + Epz [−log(D(G(z)))]

Finally, the discriminator is trained based on the:

LD = Ep∗x [−2 ∗ logD(x)− log (1−D(G(ẑ)))] + Epz [− log (1−D(G(z)))].

where β, γ are set to 10 and 5 respectively after grid search.

A ResNet18 (He et al., 2016)-based architecture encoder and decoder/generator are
utilised (with random initialisation). In the ResNet18 encoder/decoder architecture each
layer consists of 4 residual blocks and each block is 2− layer deep. We use the same dis-
criminator as in α-GAN.

The dimensions of the latent space are 128. p = 2 since we use the l2 norm (i.e., mean
square error).

All networks are implemented in Python using Pytorch, on a workstation with a NVIDIA
Titan X GPU.

3.1 Anomaly detection score

In order to predict an anomaly score s, three different strategies are utilised. For an unseen
image xunseen and its reconstructed image x̂unseen, we utilise as baseline the reconstruction
error which is defined as the l2 norm, i.e., srec = ‖xunseen − x̂unseen‖

2
2 between image and

reconstructed image (residual).

9



The second candidate for s is the output of the discriminator. D should give high
scores for reconstructions of original, normal images, but low scores for abnormal images,
sdiscr = 1 − D(xunseen). Finally, we compute an anomaly score using a gradient-based
method, GradCam++, (Chattopadhay et al., 2018). Inspired by (Kimura et al., 2020)
(Venkataramanan et al., 2019) (Liu et al., 2020) we apply GradCam++ to the score of the
discriminator with regards to the last rectified convolutional layer of the discriminator. This
produces attention maps and is also valuable for the localisation of the pathology. The
intuition of using attention maps for computing anomaly scores, is based on the hypothesis
that after training the discriminator not only learns to discriminate between normal and
abnormal samples but also learns to focus on relevant features in the image. Thus, specifi-
cally for HLHS, where the left artery is missing or is occluded compared to normal samples,
a discriminator should identify and locate this difference. The GradCam++ is computed
following:

Let y be the logits of the last layer as they are derived from the discriminator network
D(xunseen). For the same operators (i, j) and (a, b) applied to the feature map Ak we
compute weights:

wk = αk
ijRELU(

∂y

∂Ak
ij

), (6)

where the gradient weights akij can be computed as:

αk
ij =

∂2y

(∂Ak
ij)

2

2 ∂2y

(∂Ak
ij)

2
+
∑

a

∑
bA

k
ab{

∂3y

(∂Ak
ij)

3
}
, (7)

and the saliency map (SM) is computed as a linear combination of the forward activation
maps followed by a ReLU layer:

SMij = RELU(
∑

k

wkA
k
ij). (8)

We then computed the sum of the attention maps of image xunseen and its reconstruction
from the Generator network, x̂unseen:

M = SM(Dxunseen) + SM(Dx̂unseen
) (9)

and finally computed the anomaly score sattn as

sattn =
‖M × (xunseen − x̂unseen)‖

2
2

‖M‖22
(10)

To compute the anomaly score we encapsulate the information of reconstruction (Kimura
et al., 2020). Reconstruction of a normal image should be crisper compared to reconstruc-
tions from an anomalous observation. Finally, we attempt to combine anomaly scores, such
as srec with sdiscr. However, the anomaly detection performance does not improve note-
worthily.
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3.2 Data

The available dataset contains 2D ultrasound images of four-chamber cardiac views. These
are standard diagnostic views according to (NHS, 2015). The images contain labelled exam-
ples from normal fetal hearts and hearts with Hypoplastic Left Heart Syndrome (HLHS) (HLHS,
2019) from the same clinic, using exclusively an Aplio i800 GI system for both groups to
avoid systematic domain differences. HLHS is a birth defect that affects normal blood flow
through the heart. It affects a number of structures on the left side of the heart that do not
fully develop.

Our dataset consists of 2317 4-chamber view images for which 2224 cases are normal
and 93 are abnormal cases. Healthy control view planes have been automatically extracted
from examination screen capture videos using a Sononet network (Baumgartner et al., 2017)
and manual cleaning from visually trivial classification errors. A set of HLHS view planes
that would resemble a 4-chamber view in healthy subjects has been extracted with the same
automated Sononet pipeline. Another set has been manually extracted from the examination
videos by a fetal cardiologist and 38 cases that are not within 19+0 - 20+6 weeks or show
a mix of pathologies have been rejected.

For training, 2131 4-chamber view images, which are considered as normal cases are
used. During training, only images from normal fetuses are used. For testing, two different
datasets are derived for three different testing scenarios:

For dataset1(Figure 2) we use 4-chamber views from all available HLHS cases, extracted
by Sononet and cleaned from gross classification errors; in total 93 cases. Further 93 normal
cases have been randomly selected from the remaining test split of the healthy controls and
added to this dataset. HLHS cases are challenging for Sononet, which has been trained only
on healthy views. Thus, in HLHS cases, it will only select views that are close to the feature
distribution of healthy 4-chamber views, which are not necessarily the views a clinician
would have chosen. For dataset2(Figure 2), we use the 93 normal cases from dataset1 and
the expert-curated HLHS images from the remaining, nonexcluded 53 cases. For each of
these cases 1 to 4 different view planes have been identified as clinically conclusive. With
this dataset we perform two different subject-level experiments: a) selecting one of the four
frames randomly and b) using all of the 177 clinically selected views in these 53 subjects
and fusing the individual abnormality scores to gain a subject-level assessment. We also
evaluate per-frame anomaly results. The images are rescaled to 64 × 64 and normalised to
a [0, 1] value range. No image augmentation is used.

4. Evaluation and Results

We evaluate our algorithm both quantitatively as well as qualitatively. The capability of
the proposed method to localise the pathology is also examined.

4.1 Quantitative analysis

For evaluation purposes, the anomaly score is computed as described in Section 3.1. For
α-GAN and VAE-GAN we use sattn, srec and sdiscr as anomaly scores as they are presented
in Section 3.1.
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Figure 2: Graphical description of Dataset 1 and Dataset 2

For comparison with the state-of-the-art we train four algorithms: convolutional autoen-
coder (CAE) (Makhzani and Frey, 2015; Masci et al., 2011), One-class Deep Support Vector
Data Description (DeepSVDD) (Ruff et al., 2018) and f-AnoGAN (Schlegl et al., 2019).

Deep Convolutional autoencoder (DCAE) (Makhzani and Frey, 2015; Masci et al., 2011)
is also trained as a baseline. For training, MSE loss is utilised. For DCAE and One-class
DeepSVDD we use the same architectures as the ones used for the CIFAR10 dataset in the
original work (Ruff et al., 2018). Reconstruction error, i.e., ‖x−De(E(x))‖2, is defined as
anomaly score (sDCAE).

Deep Support Vector Data Description (DeepSVDD) (Ruff et al., 2018) computes the
hypersphere of minimum volume that contains every point in the training set. By minimis-
ing the sphere’s volume, the chance of including points that do not belong to the target
class distribution is minimised. Since in our case all the training data belongs to one class
(negative class-healthy data) we focus on (Ruff et al., 2018) . Let f be the network function
of the deep neural network with L layers and θl the weights’s parameters of the lth layer.
We denote the center of the hypersphere as o. The objective of the network is to minimize
the loss which is defined as:

LSV DD = min
θ

1

N

N∑

i=1

‖f(x)− o‖2 +
λ

2

L∑

l=1

‖θl‖2.
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The center o is set to be the mean of outputs which is obtained at the initial forward pass.
The anomaly score (ssvdd) is then defined at inference stage as the distance between a new
test sample to the center of the hyper-sphere, i.e., ‖f(x)− o‖2

f-AnoGAN (Schlegl et al., 2019) is described in Section 2.2. We were not able to suc-
cessfully train f-AnoGAN using the same networks as we used for α-GAN, hence we utilise
similar networks and an identical training framework as described in (Schlegl et al., 2019).
We follow the izif training procedure for the encoder network. As anomaly detection score
(sanogan) a combination of L2 residual loss between the image and its reconstruction and the
L2 norm of the discriminator’s features of an intermediate layer is utilised as it is defined in
Table 1.

In all algorithms the latent dimension is chosen as 128. We run all experiments 5 times
using different random seeds (Mario Lucic et al., 2018). We report the average precision,
recall at the Youden index of the receiver operating characteristic (ROC) curves as well
as the average corresponding area under curve (AUC) of the 5 runs of each experiment.
Furthermore, we apply the DeLong’s test (DeLong et al., 1988) to obtain z-scores and p-
values in order to test how statistically different the AUC curve of the proposed model
compared to the corresponding curves of the state-of-the-art models (CAE and DeepSVDD,
f-AnoGAN and VAE-GAN) is. We perform four different experiments:

Experiment 1 uses dataset1 and aims to evaluate general, frame-level outlier detection
performance, including erroneous classifications and fetuses below the expected age range.
In Table 2, the best performing model based on AUC score is the α-GAN method using sattn
as anomaly score which achieves an average of 0.82±0.012 AUC. The α-GAN model achieves
the best precision score. However, regarding F1 score and Recall VAE-GAN outperforms α-
GAN with 0.88 and 0.78 respectively. DeepSVDD shows the best specificity at 0.76. Figure 3
shows the ROC for the best performing (AUC, F1) initialisation and the distribution of
normal and abnormal scores for the best model of α-GAN at the Youden index. We present
confusion matrices for the α-GAN and the VAE-GAN models in Figure 3c and Figure 3d. For
normal cases both models achieve similar classification performance. However, for identifying
abnormal cases α-GAN seems to have an advantage.

Based on the DeLong’s test, for Exp. 1, for the average scores (of five experiments),
α-GAN compared to f-AnoGAN yields z = −5.22 and p = 1.80e− 07. Similarly, the values
for α-GAN compared to CAE are z = −4.82 and p = 1.37e−06. Finally, comparing α-GAN
and DeepSVDD results in z = −6.49 and p = 8.52e−11. Since p < 0.01 for all comparisons,
we can assume that α-GAN performs significantly better than the state-of-the-art when
applied to fetal cardiac ultrasound screening for HLHS. Comparing α-GAN with VAE-GAN
the values are z = −1.21 and p = 0.22 which does not indicate a significant difference
between AUC curves. As can be seen from the results, the GAN-based methods achieve
better performance for detecting HLHS.

Experiment 2 uses dataset2 for specific disease detection capabilities with expert-
curated, clinically conclusive 4-chamber views for 53 HLHS cases. We choose one of the
relevant views per subject randomly. Table 3 summarises these results. VAE-GAN has
the highest AUC, F1, precision and specificity scores using sattn as anomaly score. Also,
we note from Figure 4c and Figure 4d that the VAE-GAN method misclassified less HLHS
cases while achieving better performance for confirming normal cases. Average F1 score is
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Quantitative performance scores

Method Precision Recall Specificity F1 score AUC

CAE (Ruff et al., 2018) 0.65± 0.027 0.64± 0.061 0.65± 0.074 0.64± 0.061 0.65± 0.016
DeepSVDD (Ruff et al., 2018) 0.67± 0.106 0.37± 0.258 0.76±0.260 0.41± 0.150 0.53± 0.039
f-AnoGAN (Schlegl et al., 2019) 0.58± 0.022 0.58± 0.130 0.59± 0.097 0.57± 0.072 0.57± 0.039
srec (VAE-GAN) 0.69± 0.018 0.88±0.060 0.61± 0.057 0.78±0.015 0.78± 0.010
sdiscr (VAE-GAN) 0.75± 0.220 0.29± 0.360 0.75± 0.360 0.27± 0.230 0.42± 0.027
sattn (VAE-GAN) 0.72± 0.014 0.83± 0.043 0.68± 0.037 0.77± 0.014 0.79± 0.008
srec (α-GAN) 0.64± 0.017 0.87± 0.054 0.50± 0.038 0.74± 0.024 0.71± 0.029
sdiscr (α-GAN) 0.65± 0.056 0.51± 0.240 0.70± 0.205 0.53± 0.170 0.61± 0.067
sattn (α-GAN) 0.73±0.026 0.82± 0.068 0.70± 0.059 0.77± 0.029 0.82±0.012

Table 2: Anomaly detection performance for Exp. 1 using dataset1. Best performance in
bold.

0.89. Figure 4 shows ROC, anomaly score distribution and confusion matrices at the Youden
index of this experiment.

Quantitative performance scores

Method Precision Recall Specificity F1 score AUC

CAE (Ruff et al., 2018) 0.63± 0.095 0.56± 0.120 0.78± 0.130 0.57± 0.025 0.72± 0.015
DeepSVDD (Ruff et al., 2018) 0.39± 0.016 0.80± 0.160 0.28± 0.160 0.52± 0.032 0.49± 0.038
f-AnoGAN (Schlegl et al., 2019) 0.56± 0.077 0.52± 0.097 0.75± 0.140 0.53± 0.041 0.63± 0.043
srec (VAE-GAN) 0.64± 0.067 0.80± 0.060 0.74± 0.078 0.71± 0.020 0.84± 0.009
sdiscr (VAE-GAN) 0.36± 0.220 0.56± 0.450 0.46± 0.430 0.34± 0.205 0.39± 0.037
sattn (VAE-GAN) 0.71±0.046 0.85± 0.038 0.80±0.058 0.77±0.016 0.89±0.009
srec(α-GAN) 0.59± 0.050 0.81±0.060 0.66± 0.010 0.68± 0.015 0.79± 0.030
sdiscr(α-GAN) 0.48± 0.100 0.51± 0.280 0.61± 0.280 0.43± 0.110 0.53± 0.030
sattn(α-GAN) 0.59± 0.098 0.76± 0.150 0.66± 0.180 0.64± 0.037 0.77± 0.046

Table 3: Anomaly detection performance using dataset2 for Exp. 2. Best performance in
bold.

Experiment 3 uses dataset2 and is similar to Exp. 2 except that we take all clinically
identified views for each subject into account. We average the individual anomaly scores for
each frame, depending on the number of frames that are available per subject. VAE-GAN
achieves a better AUC score with 0.86 compared to 0.84 of α-GAN as can be seen in Table
4. However, as can be seen from the confusion matrices (best performing initialisation),
α-GAN shows a better true positive rate at the cost of a higher number of false positives
(Figure 5c). This configuration might be preferred in a clinical setting since it reduces the
number of missed cases at the cost of a slightly higher number of false referrals.

Experiment 4 is similar with the Exp. 3 except that we evaluate frame-level perfor-
mance in Table 5. VAE-GAN is again better in terms of precision and AUC performance.
However, similar to Exp. 3 α-GAN has an advantage when recognising the cases with
pathology at a cost of a higher false positive rate.
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(a) (b)

(c) (d)

Figure 3: (a) ROC-AUC curves in Exp. 1; (b) Distribution of normal/abnormal score
values for the α-GAN model with sattn as anomaly score (c) Confusion matrix for the best
performing run of the proposed α-GAN (d) Confusion matrix for the best performing run of
the VAE-GAN. This figure focuses on the results of the best performing initialisation from
five experiments with α-GAN (or VAE-GAN) while Table 2 shows average metrics.

4.2 Qualitative analysis

In order to evaluate the ability of the algorithm to localise anomalies, we plot the class acti-
vation maps as they are derived from the proposed model. We present results from abnormal
cases in dataset1 (Exp.1) Figure 7. In the abnormal cases, attention focus exactly in the
area of heart. As a consequence, anomaly scores in such cases are higher compared to nor-
mal cases and correctly indicating the anomalous cases. All anomaly scores are normalised
in the range of [0, 1]. There are cases that our algorithm fails to classify correctly. Either
they are abnormal and they are classified as normal (False Negative-FN) or they are healthy
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(a) (b)

(c) (d)

Figure 4: dataset2, Exp. 2: (a) ROC-AUC curves in Exp. 2; (b) Distribution of nor-
mal/abnormal score values for the VAE-GAN model with sattn as anomaly score (c) Con-
fusion matrix for the best performing run using srec of the proposed α-GAN. (d) Confusion
matrix for the best performing run using sattn of the VAE-GAN. This figure focuses on the
results of the best performing initialisation from five experiments with α-GAN (or VAE-
GAN) while Table 3 shows average metrics.

and identified as anomalous (False Positive-FP). In Figure 8 examples for False Positive
cases are presented alongside False Negative cases. Bad image reconstruction quality is a
limiting factor. For instance, in some reconstructions either a part of the heart is missing
(left or right ventricle/ atrium) or the shape of the heart is quite different from a normal
heart (e.g., a very “long” ventricle). As a consequence, not only the reconstruction error is
high, but also the attention mechanism focuses in this area, since it is recognised (by the
network) as anomalous. Consequently, the total anomaly score is high. In fewer examples
the signal-to-noise ratio (SNR) is low, i.e., images are blurry, and so the network fails to

16



Unsupervised Detection of Hypoplastic Left Heart Syndrome

Quantitative performance scores

Method Precision Recall Specificity F1 score AUC

CAE (Ruff et al., 2018) 0.51± 0.061 0.80± 0.136 0.54± 0.150 0.61± 0.018 0.70± 0.024
DeepSVDD (Ruff et al., 2018) 0.42± 0.063 0.69± 0.312 0.39± 0.311 0.47± 0.140 0.48± 0.038
f-AnoGAN (Schlegl et al., 2019) 0.55± 0.029 0.79± 0.067 0.62± 0.068 0.64± 0.016 0.74± 0.013
srec (VAE-GAN) 0.60± 0.029 0.87± 0.049 0.67± 0.056 0.71± 0.014 0.81± 0.076
sdiscr (VAE-GAN) 0.37± 0.150 0.98± 0.400 0.032± 0.39 0.53± 0.021 0.14± 0.034
sattn (VAE-GAN) 0.66±0.036 0.88± 0.035 0.74±0.050 0.75±0.014 0.86±0.017
srec (α-GAN) 0.57± 0.041 0.86± 0.091 0.62± 0.098 0.68± 0.022 0.78± 0.019
sdiscr (α-GAN) 0.42± 0.035 0.89± 0.110 0.28± 0.155 0.57± 0.067 0.48± 0.017
sattn (α-GAN) 0.62± 0.040 0.92±0.100 0.67± 0.069 0.73± 0.024 0.84± 0.018

Table 4: Anomaly detection performance on subject level for dataset2 and Exp. 3. Best
performance in bold.

Quantitative performance scores

Method Precision Recall Specificity F1 score AUC

CAE (Ruff et al., 2018) 0.80± 0.026 0.57± 0.081 0.71± 0.075 0.66± 0.051 0.67± 0.020
DeepSVDD (Ruff et al., 2018) 0.86± 0.100 0.09± 0.030 0.96±0.025 0.15± 0.053 0.44± 0.025
f-AnoGAN (Schlegl et al., 2019) 0.82± 0.041 0.56± 0.070 0.75± 0.095 0.66± 0.040 0.66± 0.013
srec (VAE-GAN) 0.82± 0.023 0.74± 0.062 0.69± 0.073 0.77± 0.024 0.77± 0.009
sdiscr (VAE-GAN) 0.80± 0.130 0.03± 0.007 0.99± 0.008 0.05± 0.012 0.37± 0.047
sattn (VAE-GAN) 0.86±0.016 0.78± 0.051 0.76± 0.046 0.82± 0.023 0.82±0.023
srec (α-GAN) 0.80± 0.016 0.80± 0.032 0.62± 0.051 0.80± 0.012 0.75± 0.017
sdiscr (α-GAN) 0.71± 0.060 0.72± 0.300 0.38± 0.320 0.66± 0.180 0.48± 0.055
sattn (α-GAN) 0.82± 0.030 0.85±0.110 0.64± 0.094 0.83±0.047 0.81± 0.018

Table 5: Anomaly detection performance using dataset2 in Exp. 4 for evaluation per frame.
Best performance in bold.

reconstruct the images at all. Furthermore, in the False Positive examples Figure 8a, from
clinical perspective, the angle is not quite right, so it makes the ventricles look shorter than
they are. This confuses the model, forcing the discriminator’s attention to indicate this
area as anomalous. Another point which is very interesting to highlight, is that there are
cases where some frames are very difficult, even for experts. Such an example is given in
Figure 8b, where although the second image from left belongs to an abnormal subject, the
specific frame appears normal at the first glance. Such cases also highlight limitations of
single-view approaches. In practice, all relevant frames showing the four chamber view could
be processed with our method and a majority vote could regarding referral be calibrated on
a ROC curve.

All the above plots and comparisons utilise the top-1 performing experiment among all
the runs of the experiments for α-GAN.

5. Discussion

Our results are promising and confirm that automated anomaly detection can work in fetal
2D ultrasound as shown on the example of HLHS. For this pathology we achieve an average
accuracy of 0.81 AUC, improving significantly the detection rate of front-line-of-care sonog-
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(a) (b)

(c) (d)

Figure 5: dataset2, Exp. 3: (a) ROC-AUC curves in Exp. 3; (b) Distribution of nor-
mal/abnormal score values for the VAE-GAN model with sattn as anomaly score (c) Con-
fusion matrix for the best performing run of the proposed α-GAN (d) Confusion matrix for
the best performing run of the VAE-GAN. This figure focuses on the results of the best
performing initialisation from five experiments with α-GAN (or VAE-GAN)) while Table 4
shows average metrics.

raphers during screening, which is often below 60% (Chew et al., 2007). However, there are
open issues.

False negative rates are critical for clinical diagnosis and downstream treatment. In
a clinical setting, a method with zero false negative predictions would be preferred, i.e.,
a method that never misses an anomaly, but potentially predicts a few false positives.
Assuming that the false positive rate of such an algorithm is significantly below the status
quo, the benefits for antenatal detection and potentially better postnatal outcomes would
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(a) (b)

(c) (d)

Figure 6: dataset2, Exp. 4: (a) ROC-AUC curves in Exp. 4; (b) Distribution of nor-
mal/abnormal score values for the α-GAN model with sattn as anomaly score (c) Confusion
matrix for the best performing run of the proposed α-GAN. (d) Confusion matrix for the
best performing run of the VAE-GAN. This figure focuses on the results of the best perform-
ing initialisation from five experiments with α-GAN (or VAE-GAN) while Table 5 shows
average metrics.

outweigh the costs. Of course, an algorithm with a 100% false positive rate is also not
desirable, hence calibration on the ROC must be performed.

A key aspect of the proposed algorithm is the ability of the discriminator to highlight
decisive areas in images. In order to achieve this, it is necessary to produce good reconstruc-
tions of normal images. However, reconstruction quality can be limited, depending on the
given sample. A larger dataset could provide a mitigation strategy for this. Furthermore,
alternative ways for visualising attention could be explored for disease-specific applications
such as implicit mechanisms of attention like attention gates (Schlemper et al., 2019).
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Figure 7: Top row: Pathological subjects Bottom row: GradCam++ visualisation of atten-
tion maps using α-GAN (Exp. 1).
*= dominant RV with no visible LV cavity, solid white arrow = deceptively normal-looking
LV, dashed white arrow = globular, hypoplastic LV

Although we have experimented with different type of noise (e.g Uniform) and various
augmentation techniques (e.g horizontal flip, intensity changes) we did not notice an im-
provement in anomaly detection performance. However, a further investigation of other
augmentation techniques should be done.

Moreover, it would be interesting to explore the sensitivity of our method for other
sub-types of congenital heart disease. Intuitively, accuracy of a general anomaly detection
method should be similarly high for other syndromes that affect the morphological appear-
ance of the fetal four-chamber view. HLHS has a particularly grossly abnormal appearance.
There are a lot of other CHD examples with a subtly abnormal four chamber view that would
probably be much harder to detect even for human experts. Additionally, in practice, con-
founding factors may bias anomaly detection methods towards more obvious outliers, while
subtle signs of disease or indicators encoded in other dimensions like the spatio-temporal
domain may still be missed.

Finally, robust time-series analysis is still a challenging fundamental research question
and we are looking forward to extending our method to full video sequences in future work.

6. Conclusion

In this paper we attempt to consider the detection of congenital heart disease as a one-class
anomaly detection problem, learning only from normal samples. The proposed unsupervised
architecture shows promising results and achieves better performance compared to existing
state-of-the-art image anomaly detection methods. However, since clinical practice requires
highly reliable anomaly detection methods, more work will need to be done to avoid false
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(a)

(b)

Figure 8: (a) Examples of False Positive along with the anomaly scores sattn (b) False
Negative cases along with the anomaly scores sattn (Exp. 1). *= dominant RV with no
visible LV cavity, solid white arrow = deceptively normal-looking LV, dashed white arrow
= globular, hypoplastic LV. Low Signal-to-Noise Ratio (SNR)

positives to mitigate patient stress and strain on healthcare systems and false negatives to
prevent missed diagnoses.
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