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Abstract

In this work we propose FlowReg, a deep learning-based framework that performs unsu-
pervised image registration for neuroimaging applications. The system is composed of two
architectures that are trained sequentially: FlowReg-A which affinely corrects for gross dif-
ferences between moving and fixed volumes in 3D followed by FlowReg-O which performs
pixel-wise deformations on a slice-by-slice basis for fine tuning in 2D. FlowReg-A warps
the moving volume using gross global parameters to align rotation, scale, shear, and trans-
lation to the fixed volume. A correlation loss that encourages global alignment between
the moving and the fixed volumes is employed to regress the affine parameters. The de-
formable network FlowReg-O operates on 2D image slices and is based on the optical flow
CNN network that is adapted to neuroimaging with three loss components. The photo-
metric loss minimizes pixel intensity differences, the smoothness loss encourages similar
magnitudes between neighbouring vectors, and a correlation loss that is used to maintain
the intensity similarity between fixed and moving image slices. The proposed method is
compared to four open source registration techniques ANTs, Demons, SE, and Voxelmorph
for FLAIR MRI applications. In total, 4643 FLAIR MR imaging volumes (approximately
255, 000 image slices) are used from dementia and vascular disease cohorts, acquired from
over 60 international centres with varying acquisition parameters. To quantitatively assess
the performance of the registration tools, a battery of novel validation metrics are proposed
that focus on the structural integrity of tissues, spatial alignment, and intensity similarity.
Experimental results show FlowReg (FlowReg-A+O) performs better than iterative-based
registration algorithms for intensity and spatial alignment metrics with a Pixelwise Agree-
ment (PWA) of 0.65, correlation coefficient (R) of 0.80, and Mutual Information (MI) of
0.29. Among the deep learning frameworks evaluated, FlowReg-A or FlowReg-A+O pro-
vided the highest performance over all but one of the metrics. Results show that FlowReg
is able to obtain high intensity and spatial similarity between the moving and the fixed
volumes while maintaining the shape and structure of anatomy and pathology. Our code
is available at https://github.com/IAMLAB-Ryerson/FlowReg.
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1. Introduction

Magnetic resonance imaging (MRI) offers non-invasive visualization of soft tissue that is
ideal for imaging the brain. The etiology and pathogenesis of neurodegeneration, and
the effects of treatment options have been heavily investigated in T1, T2, Proton Den-
sity (PD), Diffusion Weighted (DW), and Fluid-Attenuated Inversion Recovery (FLAIR)
MR sequences (Udaka et al., 2002)(Hunt et al., 1989)(Sarbu et al., 2016)(Trip and Miller,
2005)(Guimiot et al., 2008) for dementia (Oppedal et al., 2015) and Alzheimer’s Disease
(AD) (Kobayashi et al., 2002). As cerebrovascular disease (CVD) has been shown to be a
leading cause of dementia, there is growing interest into examining cerebrovascular risk fac-
tors in the brain using neuroimaging. CVD markers, such as white matter lesions (WML),
predict cognitive decline, dementia, stroke, death, and WML progression increases these
risks (Debette and Markus, 2010), (Alber et al., 2019). Research into the vascular contri-
butions to dementia and neurodegeneration could be valuable for developing new therapies
(Frey et al., 2019), (Alber et al., 2019), (Griffanti et al., 2018), (Malloy et al., 2007). FLAIR
MRI is preferred for WML analysis (Wardlaw et al., 2013) (Badji and Westman, 2020) since
the usual T2 high signal from cerebrospinal fluid (CSF) is suppressed, highlighting the white
matter disease (WMD) high signal. This is due to increased water content secondary to
ischemia and demyelination and much more robustly seen in FLAIR than with T1 and T2
sequences (Lao et al., 2008), (Khademi et al., 2011), (Kim et al., 2008), Piguet et al. (2005).

One family of algorithms heavily relied upon in neuroimaging research is image regis-
tration, which is the process of aligning two images (one fixed and one moving) so they are
in the same geometric space. Structures and changes between two images can be directly
compared when images are registered to align longitudinal scans of the same patient to
assess disease change over time (Csapo et al., 2012), (El-Gamal et al., 2016), map patient
images to an atlas for template-based segmentation (Iglesias and Sabuncu, 2015), (Phellan
et al., 2014), or to correct for artifacts such as patient motion and orientation (Mani and
Arivazhagan, 2013). As medical images are composed of highly relevant anatomical and
pathological structures such as brain tissue, ventricles, and WMLs, it is important that
the shape and relative size of each structure is maintained in the registered output. MR
images are highly complex so obtaining correspondence while maintaining structural and
anatomical integrity presents a challenging task.

Traditionally, the process of registration, or aligning two images has been framed as an
optimization problem, which searches for the transform T between a moving (Im) and a
fixed (If ) image by optimizing some similarity criteria between the fixed and moving images
T = argmaxT C (If , T (Im)). This optimization can be calculated via gradient descent and
ends when maximum similarity is found or a maximum number of iterations is obtained.
The similarity between the fixed and (transformed) moving images is calculated via a cost
function C, such as mutual information (MI), cross-correlation (CC), and mean-squared
error (MSE) (Maes et al., 1997) (Avants et al., 2008). Registrations can be done globally
via affine transformation (translation, rotation, shear, and scale) or on a per-pixel level
through the use of non-uniform deformation fields (each pixel in the moving image has a

2



FlowReg: CNN Registration

target movement vector).
Registration algorithms that involve an iterative-based approach are computationally

expensive and any calculated characteristics are not saved after an intensive computational
procedure; the transformation parameters are discarded and not used for the next pair of im-
ages. In large multi-centre datasets this can create large computation times or non-optimal
transformations. To overcome the non-transferable nature of traditional image registration
algorithms, machine learning models that learn transformation parameters between images
have been gaining interest (Cao et al., 2017) (Sokooti et al., 2017) (Balakrishnan et al.,
2018).

Recently, several convolutional neural network-based (CNN) medical image registration
algorithms have emerged to address the non-transferable nature, lengthy execution and
high computation cost of the classic iterative-based approaches (Balakrishnan et al., 2018;
Uzunova et al., 2017). In 2017, researchers adapted an optical flow CNN model, FlowNet
(Dosovitskiy et al., 2015), to compute the deformation field between temporally spaced
images (Uzunova et al., 2017). Although promising, this approach required ground truth
deformation fields during training, which is intractable for large clinical datasets. To over-
come these challenges, Voxelmorph was developed as a completely unsupervised CNN-based
registration scheme that learns a transformation without labeled deformation fields (Jader-
berg et al., 2015). Further work by Fan et. al Fan et al. (2018) has shown that Generative
Adversarial Networks (GAN) can be used to generate deformation fields. These fields are
then used to warp the moving image until the discriminator is unable to distinguish between
the registered and fixed image. Others have suggested a sequential affine and deformable 3D
network for brain MRI registration Zhu et al. (2020). In another work, Zhao et al. (2019)
proposed a fully unsupervised method based on CNNs that includes cascaded affine and
deformable networks to perform alignment in 3D in one framework. The proposed method
is inspired by these pioneering works but instead an affine alignment is performed in 3D
first, followed by a 2D fine-tuning on a slice-by-slice basis.

Global differences such as head angle or brain size can vary significantly between patients
and these global differences are likely to be mainly realized in 3D. Additionally, there are
local and fine anatomical differences that are more visible on a per slice basis. Therefore,
to get maximal alignment between neuroimages, both global differences in 3D and local
differences in 2D should be addressed. Other design considerations include dependence on
ground truth data which is impractical to obtain for large datasets. Lastly, and importantly,
registration algorithms must maintain the structural integrity of important objects such as
WML and ventricles.

To this end, this paper proposes a CNN-based registration method called FlowReg:
Fast Deformable Unsupervised Image Registration using Optical Flow that addresses these
design considerations in a unified framework. FlowReg is composed of an affine network
FlowReg-A for alignment of gross head differences in 3D and a secondary deformable reg-
istration network FlowReg-O that is based on the optical flow CNNs (Ilg et al., 2017) (Yu
et al., 2016) for fine movements of pixels in 2D, thus managing both global and local differ-
ences at the same time. In contrast to previous works that perform affine and deformable
registration strictly in 3D, we postulate that performing affine registration in 3D followed
by 2D refinement will result in higher quality registrations for neuroimages. FlowReg is
fully unsupervised, and ground truth deformations are not required. The loss functions
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are modified to ensure optimized performance for neuroimaging applications. Lastly, this
framework does not require preprocessing such as brain extraction and is applied to the
whole head of neuroimaging scans.

As an additional contribution, a battery of novel validation metrics are proposed to
quantify registration performance from a clinically salient perspective. Validation of regis-
tration performance is not a simple task and many methods have employed manually placed
landmarks (Balakrishnan et al., 2018), (Uzunova et al., 2017), (de Vos et al., 2019). In med-
ical image registration, it is of interest to maintain the structural integrity of anatomy and
pathology in the moving images, while obtaining maximum alignment with the fixed vol-
ume. To measure this, three groups of metrics are proposed: structural integrity, spatial
alignment, and intensity similarity. Structural (tissue) integrity is measured via volumet-
ric and structural analysis with the proportional volume (PV), volume ratios ∆V and
surface-surface distance (SSD) metrics. Spatial alignment is measured via pixelwise agree-
ment (PWA), head angle (HA) and dice similarity coefficient (DSC). Intensity similarity
is measured using traditional metrics: mutual information (MI) and correlation coefficient
(Pearson’s R) as well as one additional new one, the mean-intensity difference (MID).

The performance of FlowReg is compared to four established and openly available image
registration methods: Demons (Thirion, 1995, 1998; Pennec et al., 1999), Elastix (Klein
et al., 2010), ANTs (Avants et al., 2008), and Voxelmorph (Balakrishnan et al., 2018).
Three are traditional non-learning iterative based registration methods while Voxelmorph
is a CNN-based registration tool. Performance is measured over a large and diverse multi-
institutional dataset collected from over 60 imaging centres world wide of subjects with
dementia (ADNI) (Mueller et al., 2005) and vascular disease (CAIN) (Tardif et al., 2013).
There are roughly 270,000 images and 4900 imaging volumes in these datasets with a range
of imaging acquisition parameters. The rest of the paper is structured as follows: Section
2.1 describes the FlowReg architecture and Section 2.2 outlines the validation metrics. The
data used, experimental setup, and results are shown in Section 3 followed by the discussions
and conclusions in Section 4 and Section 5.

2. Methods

In this section, we introduce FlowReg, Fast Deformable Unsupervised Image Registration
using Optical Flow, with focus on neuroimaging applications. Given a moving image volume
denoted by M(x, y, z), where M is the intensity at the (x, y, z) ∈ Z3 voxel, and the fixed
image volume F (x, y, z) the system automatically learns the registration parameters for
many image pairs, and uses that knowledge to predict the transformation T for new testing
images. The section closes with a battery of novel registration validation metrics focused
on structural integrity, intensity and spatial alignment.

2.1 FlowReg

FlowReg, is based exclusively on CNN architectures, and the alignment is fully unsupervised,
meaning that registration parameters are regressed without ground truth knowledge. Reg-
istration with FlowReg is completed with a two phase approach shown in Fig. 1. FlowReg-A
is a 3D affine registration network that corrects for global differences and FlowReg-O refines
the affine registration results on a per slice basis through a 2D optical flow-based registra-
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Figure 1: FlowReg consists of affine (FlowReg-A) and optical flow (FlowReg-O) networks.
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Figure 2: Flowreg-A model structure. A pair of 3D input volumes are concatenated, each
yellow box represents the output of 3D convolutional layers, the numbers at the
bottom of the box are the number of feature maps generated by each convolutional
kernel. The last layer (purple) is a fully connected layer with 12 nodes and a linear
activation function.

tion method from the video processing field (Dosovitskiy et al., 2015), (Ilg et al., 2017),
(Garg et al., 2016), (Yu et al., 2016). The affine component is trained first and the affine
parameters are obtained for each volume. Once all the volumes are registered using the
affine components, FlowReg-O is trained to obtain the deformation fields. The held out
test set is used to test the full FlowReg pipeline end-to-end.

2.1.1 FlowReg-A: Affine Registration in 3D

The proposed affine model FlowReg-A warps the moving volume using gross global pa-
rameters to align head rotation, scale, shear, and translation to the fixed volume. This
is beneficial when imaging the brain in 3D, since each the orientation of subjects’ heads
can vary. Additionally, images are often of different physical dimensions depending on the
scanner type and parameters used for acquisition. To normalize these global differences, we
propose a completely unsupervised CNN-based 3D affine registration method (i.e. volume
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registration), where the transformation parameters are learned.
The CNN network used to regress the affine matrix parameters is shown in Figure 2 and

described in Table 6. The network architecture and hyperparameter selection is similar to
the encoder arm of the FlowNet-Simple network, with changes made to the input size and
the number of 3D convolution kernels. The affine model is comprised of six convolutional
layers and one fully-connected layer which is used to regress the flattened version of the
three-dimensional affine matrix, A:

A =





a b c d

e f g h

i j k l



 , (1)

where A contains the rotation, scale, and translation parameters. Given this affine trans-
formation matrix, the original image volume may be transformed by Mw(x, y, z) = A ×
M(x, y, z).

To solve for the transformation parameters A, a correlation loss was used to encourage
an overall alignment of the mean intensities between the moving and the fixed volumes:
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∑N
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(
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) (

Mwi
−Mw

)

√

∑N
i=1

(
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)2
√

∑N
i=1

(

Mwi
−Mw

)2
(2)

where F is the fixed volume, Mw is the moving volume warped with the calculated matrix,
N is the number of voxels in the volume, Fi is the ith element in F , Mwi

is the ith element
in Mw, and F , Mw are the mean intensities of the fixed and moving volumes, respectively.
Using the correlation loss function, the parameters are selected during training that ensures
global alignment between the fixed and moving image volumes.

2.1.2 FlowReg-O: Optical Flow-based Registration in 2D

The optical flow component of the registration framework, FlowReg-O, is used to perform
fine-tuning of the affine registration results on a slice-by-slice basis (i.e. in 2D). FlowReg-O
is an adapted version of the original optical flow FlowNet architecture, used in video pro-
cessing frameworks. Optical flow is a vector field that quantifies the apparent displacement
of a pixel between two temporally separated images. A video is composed of a number
of frames at a certain frame-rate per second, F

s
and the optical flow measures the motion

between objects and pixels across frames and can be used to calculate the velocity of objects
in a scene (Horn and Schunck, 1981). For the task of medical image registration, instead
of aligning neighbouring frames, we will be aligning moving and fixed images. The same
principles as the original optical flow framework are adopted here, where the displacement
vector is found and used to warp pixels between moving and fixed images in 2D.

The proposed deformable registration network is identical to the FlowNet Simple archi-
tecture in terms of the convolutional layers and hyperparameter selection, but adapted to
grayscale medical image sizes and content. See Fig 3 for the FlowReg-O architecture, which
is also described in Table 7. The original FlowNet architecture was implemented on the
synthetically generated dataset ”Flying Chairs” with known optical flow values for ground
truths, thus dissimilarities are calculated as a simple endpoint-error (EPE) (Dosovitskiy
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Figure 3: Flowreg-O model structure. A pair of 2D input images are concatenated first
followed by 2D convolutional layers (yellow). Numbers below layers correspond
to the number of feature maps. Skip connections between the upscaling decoder
(blue) arm are concatenated (gray boxes) with the output of the encoder lay-
ers. The flow at seven resolutions are labeled with flow above the corresponding
outputs. I is the input image resolution 256× 256.

et al., 2015; Ilg et al., 2017). Since then, unsupervised methods have been proposed to train
optical flow regressor networks based on a loss that compares a warped image using the
regressed flow and its corresponding target image with the use of Spatial Transformer Net-
works (Jaderberg et al., 2015) (Yu et al., 2016). In medical imaging, the optical flow ground
truths are impossible to obtain, so the same unsupervised principle is adopted here, but the
losses have been conformed for medical images. In addition to photometric and smoothness
loss components which were used in the original work (Yu et al., 2016), FlowReg-O utilizes
an additional correlation loss term, with each loss encouraging overall similarity between
the fixed and moving images while maintaining small 2D movements in the displacement
field.

The total loss function is a summation of three components: photometric loss `photo to
keep photometric similarity through the Charbonnier function, the smoothness loss `smooth

which ensures the deformation field is smooth (and limits sharp discontinuities in the vec-
tor field), and the correlation loss `corr, which was added to enforce global similarity in the
intensities between the moving and fixed images. The total loss for FlowReg-O is

L(u,v;F (x, y),Mw(x, y)) =γ · `photo(u,v;F (x, y),Mw(x, y))+

ζ · `corr(u,v;F (x, y),Mw(x, y)) + λ · `smooth(u,v)
(3)

where u,v are the estimated horizontal and vertical vector fields, F (x, y) is the fixed image,
Mw(x, y) = M(x + u, y + v) is the warped moving image, and γ, ζ, and λ are weighting
hyper-parameters.

The photometric loss, adopted from Yu et al. (2016), is the difference between intensities
of the fixed image and the warped moving image and evaluates to what degree the predicted
optical flow is able to warp the moving image to match the intensities of the fixed image on
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Figure 4: Charbonnier function (Eqn. 5) for α = 0.5, 0.4, 0.3, and 0.2.

a pixel-by-pixel basis:

`photo(u,v;F (x, y),Mw(x, y)) =
1

N

∑

i,j

ρ(F (i, j)−Mw(i, j))) (4)

where N is the number of pixels and ρ is the Charbonnier penalty function which is used
to reduce contributions of outliers. The Charbonnier penalty is defined by:

ρ(x) = (x2 + ε2)α (5)

where x = (F −Mw), ε is a small value (0.001), and α regulates the difference in intensities
between the moving and fixed images such that large differences can be damped to keep
the magnitudes of the deformation vectors within a reasonable limit. The effect of the α

parameter on the Charbonnier function is shown in Fig. 4. For smaller α values, the Char-
bonnier function suppresses the output magnitude which is used to regress finer movements
in the displacement field.

The smoothness loss is implemented to regularize the flow field. The loss component
encourages small differences between neighbouring flow vectors in the height and width
directions and is defined by

`smooth(u,v) =
H
∑

j

W
∑

i

[ρ(ui,j − ui+1,j) + ρ(ui,j − ui,j+1)+

ρ(vi,j − vi+1,j) + ρ(vi,j − vi,j+1)],

(6)

where H and W are the number of rows and columns in the image and ui,j and vi,j are
displacement vectors for pixel (i, j) and ρ is the Charbonnier function. This loss measures
the difference between local displacement vectors and minimizes the chances of optimizing
to a large displacement between neighbouring pixels.

Lastly, we added an additional correlation loss component to encourage an overall align-
ment of the mean intensities between the moving and the fixed 2D images (similar to
FlowReg-A), as in:

`corr2D (F,Mw) = 1−
∑N

i=1

(

Fi − F
) (

Mwi
−Mw

)

√

∑N
i=1

(

Fi − F
)2
√

∑N
i=1

(

Mwi
−Mw

)2
, (7)
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where F is the fixed image, Mw is the moving image warped with the calculated flow, N
is the number of pixels in the image, Fi is the ith element in F , Mwi

is the ith element in
Mw, and F , Mw are the mean intensities of the fixed and moving images, respectively. A
summary of the loss components and how they are implemented for the FlowReg-O network
is is shown in Fig. 5.

Figure 5: Overview of loss components for the deformable registration network, FlowReg-O.

2.2 Validation Metrics

There are three categories of metrics that are proposed that each measure a particular
aspect of registration accuracy that have clinical relevance, including: structural integrity,
spatial alignment, and intensity similarity. The validation measures for each category are
shown in Table 1 and the flow diagram to compute each of the metrics is shown in Figure
21. In total, there are nine metrics computed, and each metric is summarized in Table 1.
A more detailed explanation of how to compute each metric is available in Appendix 5.

3. Experiments and Results

In this section the data and the experimental results are detailed.

3.1 Data

The performance of FlowReg is evaluated in a large and diverse FLAIR MRI data reposi-
tory. Over 270,000 FLAIR MR images were retrieved from two datasets which comprises
roughly 5000 imaging volumes from over 60 international imaging centres. This comprises
one of the largest FLAIR MRI datasets in the literature that is being processed automati-
cally to the best of our knowledge. The first dataset is from the Canadian Atherosclerosis
Imaging Network (CAIN) Tardif et al. (2013) and is a pan-Canadian study of vascular dis-
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Table 1: Summary of validation metrics. M(x, y, z), F (x, y, z) and A(x, y, z) are the mov-
ing, fixed, and generated atlas volumes respectively, with spatial coordinates
(x, y, z). vols is the volume of a structure s, N is the number of images, bM
and bF are the brain masks of the moving and fixed, and p, q and r are distances
between pixels.

Metric Equation

S
tr
u
ct
u
ra
l
In
te
gr
it
y Proportional Volume PV = vols

volb

Volume Ratio ∆Vs =
volorig
volreg

Surface-Surface-Distance SSD = 1
N

[

∑N
i=1 argmin(xs,ys,zs)∈S (

√
p+ q + r)

]

S
p
at
ia
l
A
li
gn

m
en
t Head Angle θ(◦) from midsagital plane

Pixel-Wise Agreement PWA(z) = 1
Nj

1
Nxy

∑

j∈J

∑

(x,y)(Mj(x, y, z)− F (x, y, z))2

Brain-DSC DSC = 2|bM∩bF |
|bM |+|bF |

In
te
n
si
ty

S
im

il
ar
it
y Mutual Information I(M ;F ) =

∑

f∈F

∑

m∈M p(M,F )(m, f) log
(

p(M,F )(m,f)

pM (m)pF (f)

)

Correlation Coefficient r(M,F ) =
∑n

i=1(Mi−M)(Fi−F )√∑n
i=1(Mi−M)2

√∑n
i=1(Fi−F )2

Mean Absolute Intensity Difference MAID(A,F ) = 1
Ni

∑

i |pA(i)− pF (i)|

ease. The second dataset is from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Mueller et al., 2005) which is an international study for Alzheimer’s and related dementia
pathologies. The acquisition and demographics information is shown in the Appendix in
Table 5 and 4. Based on image quality metrics supplied with the ADNI database, scans
with large distortions, motion artifacts, or missing slices, were excluded from the study. In
total there were 310 volumes excluded based on this criteria. For training, validation and
testing an 80/10/10 data split was employed and volumes were randomly sampled from
CAIN and ADNI. The resulting splits were 3714 training volumes (204,270 images), 465
validation volumes (25,575 images) and 464 test volumes (25,520 images). See Figure 19
for example slices from several volumes of the ADNI and CAIN test set, exhibiting wide
variability in intensity, contrast, anatomy and pathology.

To measure the validation metrics proposed in Section 2.2, two sets of images are re-
quired. Firstly, all volumes in the test set (464 volumes) are used to compute the intensity
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and spatial alignment metrics: HA, PWA, DSC, MI, Corr, MAID. Second, to compute
the structural integrity metrics (PV, volume ratio and SSD metrics), binary segmentation
masks of the structures of interest are required and 50 CAIN and 20 ADNI volumes were
sampled randomly from the test set for this task. For the objects of interest, ventricles and
WML objects are selected since they represent clinically relevant structures that charac-
terize neurodegeneration and aging. Manual segmentations for the ventricular and WML
regions were generated by a medical student trained by a radiologist. These objects are used
to examine the structural integrity before and after registration. To generate brain tissue
masks, the automated brain extraction method from (Khademi et al., 2020) is utilized to
segment cerebral tissue in FLAIR MRI. The atlas used is this work as the fixed volume
F (x, y, z) has the dimensions of 256 × 256 × 55 and is further detailed in (Winkler et al.).
The moving image volumes M(x, y, z) comes from the image datasets described in Table 5
and no pre-processing was done to any of the volumes other than resizing M(x, y, z) to the
atlas resolution (256× 256× 55) through bilinear interpolation.

3.2 Experimental Setup

FlowReg-A and FlowReg-O models were trained sequentially. First, FlowReg-A is trained
using 3D volume pairs of M(x, y, z) and F (x, y, z) and using the optimized model parame-
ters, the training volume set is affinely registered to the atlas using the found transformation
(Dalca et al., 2018). Subsequently, the globally aligned volumes are used to train FlowReg-
O, on a slice-by-slice basis, using paired moving M(x, y) and fixed F (x, y) images to obtain
the fine-tuning deformation fields in 2D. For FlowReg-A and FlowReg-O the Adam opti-
mizer was used (Kingma and Ba, 2014) with a β1 = 0.9 and β2 = 0.999, and a learning
rate of lr = 10−4. FlowReg-A training was computed for 100 epochs using a batch size
of four pairs of volumes from M(x, y, z) and F (x, y, z). FlowReg-O was trained using the
globally aligned 2D images for 10 epochs using a batch size of 64 image pairs (2D) at seven
two-dimensional resolutions: 256×256, 128×128, 64×64, 32×32, 16×16, 8×8, and 4×4.
The loss hyper-parameters were set as γ = 1, ζ = 1, and λ = 0.5 as per the original optical
flow work Yu et al. (2016). During the testing phase, the deformation field in the last layer
of the decoding arm is used to warp the moving test images as this resolution provides per
pixel movements and is generated at the same resolution of the input image. Using the
trained models for the complete FlowReg pipeline, the testing performance is compared to
that of VoxelMorph, ANTs, Demons and SimpleElastix.

Training for CNN models was performed using a NVIDIA GTX 1080Ti, with Keras
(Chollet et al., 2015) as a backend to Tensorflow (Abadi et al., 2015) for FlowReg-A,
FlowReg-O, and Voxelmorph. ANTs registration was performed in Python using the Sym-
metric Normalization (SyN) with default values (Avants et al., 2008). Demons algorithm
was implemented in Python using SimpleITK (Johnson et al., 2013). Similarly, the Pythonic
implementation of Elastix (Klein et al., 2010) was employed for SimpleElastix (Marstal
et al., 2016) as an add-on to SimpleITK. As a preprocessing step, prior to running Vox-
elmorph, the volumes were first affinely registered using ANTs-Affine. Voxelmorph was
then trained for 37,000 iterations (to avoid observed overfitting) using the same training
dataset utilized for training FlowReg. Voxelmorph performs 3D convolutions, thus resizing
was necessary to keep the output of the decoder the same size as the pooling and upsam-
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pling layers. Both the atlas and the moving volumes were resized to 256 × 256 × 64. This
resolution was chosen to be a binary multiple of 2n to ensure that the decoder arm of the
U-net style network is able to rebuild the learned feature maps to the original input size
and warp the volumes accordingly.

To validate the registration methods, the metrics described in Section 2.2 and shown in
Fig. 21 were used. The structural integrity validation metrics (PV, volume ratio and SSD)
used binary masks for the corresponding brain, ventricle, and WML masks and the resul-
tant deformation field or transformation from each registration method. The PV calculation
includes PV from the ventricles and WMLs with respect to the whole brain volume. The
SSD is computed between the ventricle surface and the brain surface only; WML are not
included for this metric since small lesion loads and irregular WML boundaries can create
large differences in the SSD which may not be related to overall integrity. Finally, for all
registration methods and all test data, the large-scale metrics are computed: HA, PWA,
DSC, MI, R and MAID were calculated between the registered volumes and atlas for all
testing volumes. Warped masks were binarized with a threshold of 0.1 so as to avoid the
non-integer values obtained from interpolation.

3.3 Results

In this section the experimental results will be presented. First, the effect of α on the Char-
bonnier penalty function (Equation 5) for the optical flow photometric and smooth loss
functions in FlowReg-O was analyzed since this parameter plays a major role in reducing
over-fitting and overtly large deformations. Using the held out validation set, the value for
α is selected based on the effect this parameter has on the images, which includes visual
analysis of the distortion on the images, the magnitude of the optical flow field as well as
the average flow magnitude. The model with the appropriate α is used to train the final
model for the remainder experiments.

The registration performance of FlowReg-O is studied for α from 0.10 to 0.45 in 0.05
increments by training the network, registering images from the holdout set, and visual
inspection. See Figure 19 and Figure 20 for images and flow magnitudes for different α in
Appendix A. At α ≥ 0.25 values there is more distortion and smearing within the brain,
ventricle shapes are warped, and there is distortion of the WMLs. At α ≤ 0.15 there was
little to no pixel movement. These findings are confirmed by computing the average flow
magnitude per pixel in Figure 6, which shows low pixel movement for low α and large dis-
placements for larger α. Based on these findings, the ”sweet-spot” for α value lies within
0.2 and 0.25 to ensure moderate pixel movement without distortion. To ensure there are
no overt movements and to be conservative side, we have selected α = 0.2 for FlowReg-O.
The overall effect of FlowReg-A and FlowReg-O with α = 0.2 are used for the final model.

Using the finalized FlowReg model, test performance was compared to of each of the
other registration methods using the proposed validation metrics. All of the testing data
(464 volumes) were registered using the models and algorithms described previously. Exam-
ple registration results for all of the methods are shown in Figure 7. Bottom, top and middle
slices were chosen to show the spectrum of slices that need to be accurately warped and
transformed from a 3D imaging perspective. In the first row, slices from the fixed (atlas)
volume F (x, y, z) are shown, followed by the corresponding slices from the moving volume
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Figure 6: The average flow magnitude per pixel for FlowReg-O at various α values.

M(x, y, z). The first column contains images with the ocular orbits and cerebellum in both
in the moving and fixed. In the middle slices of the volume, the ventricles are visible and
some periventricular WMLs as well. The top slice of the fixed volume is the top of the head
and is included since it is comprised of small amounts of brain tissue. The remaining rows
display the results of registering the moving images M(x, y, z) to the fixed images F (x, y, z)
for each of the respective tools.

For ANTs registration with the affine and deformable component (SyN) there is good
alignment on the middle slices but the top slice has some pixels missing, and the lower slices
have the ocular orbits in multiple slices (which are not present in the atlas for these slices)
indicating poor alignment in 3D. Demons exhibits large deformations for all three slices and
therefore, this tool is not ideal for clinical applications involving FLAIR MRI. SimpleElastix
seems to align the images over most spatial locations, except the lower slices as they contain
ocular orbits for slices that do not anatomically align with the atlas. Voxelmorph exhibits
similar trends with good alignment in middle slices. The lower slices however contain ocular
orbits in slices that are not present in the atlas. The remaining rows show results for the
proposed work. First the results of only the affine component, FlowReg-A, is displayed.
There is excellent alignment in the bottom and middle slices as well as in the top image
slices indicating high anatomical alignment with the atlas. When combining FlowReg-A
with FlowReg-O in the last row, the overall similarity and alignment with the atlas is im-
proved. The shape of the head is more similar to that of the fixed volume slices, and also
the top slice is more anatomically aligned.

To examine the effect of anatomical alignment between the two CNN methods (Voxel-
Morph and the proposed FlowReg), see Figure 8. The top row has the fixed volume F (x, y, z)
and the remaining columns contain sequential registration results for four subjects using
VoxelMorph and FlowReg. FlowReg consistently provides a more accurate alignment of the
slice data, and is more consistent in the anatomy it is representing across cases. This is
especially evident in the bottom slices, where images registered with Flowreg contain ocular
orbits only in the correct slices, and in the top slices, where the top of the head is more
accurate in size, shape and anatomy as compared to Voxelmorph.

To quantitatively compare performance across the methods, the average of the evalua-
tions metrics from the testing set are shown in Table 2. The results for each category of
validation metric will be described next.
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Figure 7: Registration results for seven slices from a single volume. Top row is the atlas
that is used as the fixed volume F (x, y, z) and the second row contains the mov-
ing volume M(x, y, z). The remaining rows show registration results of ANTs,
Demons, SimpleElastix, VoxelMorph, FlowReg-A and FlowReg (FlowReg-A+O).
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Figure 8: Visual comparison between Voxelmorph and FlowReg-A+O. The top row contains
the fixed volume F (x, y, z) and the columns display sample registration results
over four subjects for each method.
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Table 2: Average registration performance (structural integrity, spatial alignment and
intensity-based metrics). Bold values are best performance across methods while
underline is best among deep learning methods. ' X indicates a value closest
to X is best, ↓ lowest value is best, ↑ highest value is best. ∆PVvent × 10−3,
∆PVwml × 10−3, MAID × 10−3, MAID − zp× 10−3.

ANTs Demons SE VM FlowReg-A FlowReg-A+O

S
tr
u
ct
u
ra
l

∆Vbrain ' 1 1.28 1.47 1.25 1.01 1.14 1.11
∆Vvent ' 1 1.27 1.31 1.60 0.64 0.96 0.86
∆Vwml ' 1 0.84 1.01 0.81 0.35 0.67 0.53
∆PVvent ' 0 0.52 -2.80 7.19 -23.11 -7.31 -11.52
∆PVwml ' 0 -5.17 -4.74 -5.67 -20.17 -7.14 -11.20
∆SSD ' 0 -4.70 -8.66 -21.81 29.63 14.58 13.82

S
p
at
ia
l HA-ς ↓ 6.21 5.16 2.981 10.83 6.89 3.91

PWA-Σ ↓ 1.24 2.40 1.92 1.47 1.15 0.65

Brain-DSC↑ 0.88 0.77 0.87 0.84 0.86 0.85

In
te
n
si
ty MI↑ 0.24 0.13 0.16 0.20 0.25 0.29

R↑ 0.64 0.41 0.39 0.60 0.65 0.80

MAID' 0 5.24 6.26 5.99 5.54 5.08 5.33
MAID-zp' 0 0.53 1.99 1.35 1.16 0.86 0.84

3.3.1 Structural Integrity

To ensure structures of interest are not distorted and integrity is maintained, the following
structural integrity metrics are examined: change in proportional volume (∆PV ), the vol-
ume ratio (∆V ), and the change in the structural similarity distance (∆SSD). The average
of the metrics are listed in Table 2 and the corresponding plots are shown in Figures 10, 9,
and 11.

PV measures the proportional volumes of WMLs and ventricles before and after each
registration. It is quantified as the PV change, ∆PV , and the results are shown in Figure:
10 while the average measures are in Table 2. The results nearest the zero line indicate
the least change in PV compared to pre-registration and the least deformation. The PV
metric shows that for all registration techniques the relative volumes of objects are mostly
enlarged after deformation. The only cases where structures were decreased in size were the
ventricles for the non-learning based methods ANTs and SimpleElastix for the ventricles.
The least amount of distortion as quantified by the PV difference, for both ventricles and
WMLs, is seen using the ANTs and Demons registration methods. The largest change in
the WML and ventricles is seen in with VoxelMorph. FlowReg-A and FlowReg-O slightly
enlarge both ventricles and WML. FlowReg-A has a PV difference for the ventricles of
−7.3 × 10−3 and a WML with −7.1 × 10−3. FlowReg-A+O, the combination of the affine
and optical flow steps, shows approximately a −11.5× 10−3 change in PV for the ventricles
and −11.2 × 10−3 change in PV for the WML class. Since the two steps are performed in
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a sequential manner, the difference between FlowReg-A and FlowReg-A+O would provide
the amount of change in PV provided by FlowReg-O, which was found to be 4.2× 10−3 and
4.1× 10−3 for ventricles and WMLs, respectively. These values are closer to that of ANTs
registration.

The volume ratio metrics quantify how much the structures of interest have decreased
(> 1) or increased in volume (< 1) after registration. Ideally, structures would remain the
same size after registration (∆Vs = 1). As shown in Table 2 and Figure 9, the volume ratio of
the brain is most unchanged through registration with VoxelMorph, followed closely by the
proposed work (FlowReg-A and the total pipeline FlowReg-A+O). The ventricles are most
similar to the original using FlowReg-A and FlowReg-A+O, where the size of the ventricles
were increased slightly. In contrast to traditional registration algorithms where ventricles
mostly decrease in size, both FlowReg and VoxelMorph increase the size of the ventricles,
where the size of the ventricles in VoxelMorph have approximately doubled. In terms of
WML, Demons was the most favourable as the WML volume was almost unchanged after
registration. This may be due to the fact this registration scheme seemed to mainly warp
the boundary surrounding the head. Compared to the deep learning methods, in terms of
WML enlargement, it seems that the traditional registration methods are more favourable
in this regard, with FlowReg-A providing the lowest volume increase out of all deep learning
methods.

The third integrity metric considered is SSD, which measures the shape of an anatomic

Figure 9: Structural volumetric ratio for brain, ventricles and WML.

object (this case the ventricles) with respect to the boundary of the brain. To measure the
extent to which the shape of the ventricles has changed in shape before and after regis-
tration, the difference, or percent change in SSD (∆SSD) is measured over the testing
dataset and reported in Figure 11 for each of the registration methods. The lowest val-
ues are observed after registration using ANTs and Demons, followed by FlowReg-A+O.
FlowReg-A+O has a change of around 13.8% after registration which when compared to
FlowReg-A, the difference is about 1% which is the assumed contribution from FlowReg-O
only. Since majority of the warping is done in 2D and largely affects the outer region of the
brain and head, this metric exhibits that FlowReg-O maintains the shape of the brain and
ventricles. The highest structural change when measured with the SSD validation metric is
noticed using SimpleElastix and VoxelMorph.
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Figure 10: Proportional Volume (PV) difference of ventricles and WMLs.

Figure 11: Surface to surface Distance (SSD) percent change of ventricles.

3.3.2 Spatial Alignment

Figure 12 displays the head angle (HA) results computed over all testing volumes. For
best performance, the HA would be ideally 0 (i.e. aligned with the midsagital plane), with
minimal spread across the dataset to indicate consistency. The spread of the HA metric
is denoted by ςHA (average values can be found in Table 2) and is shown by the green
line in Figure 12 which indicates three standard deviations away from the mean. A tighter
clustering around 0 degrees indicates less deviation from the midsagittal plane (or lower
HA over the entire registered dataset). As seen, the lowest spread from the mean is seen by
SimpleElastix and FlowReg-A+O registration methods, indicating these methods produce
the most consistent spatial alignment with the midsaggital plane. It is also noted that
the performance of FlowRegA+O compared to the affine only FlowReg-A volumes shows a
reduction in the spread of the HA through the application of the optical flow algorithm,
which indicates that FlowReg-O improves overall alignment. The largest spread (or higher
variability of the HA) is obtained by Voxelmorph.

Pixelwise Agreement (PWA) is measured by calculating the per-slice mean-squared error
(MSE) when compared to respective slices from the original atlas F (x, y, z). A lower value
of PWA indicates intensity and spatial alignment across slices in a registered dataset. PWA
is computed on a slice-by-slice basis for slice z by PWA(z) which is summed over all slices in
the volumes to get a volume-based PWA,

∑

z PWA(z). The slice- and volume-based PWA
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Figure 12: Head angle (HA) measure. Blue solid line indicates the average µ and the green
line is the spread, σHA.

Figure 13: Pixelwise agreement (PWA). Left: the slice-wise alignment error PWA(z) as a
function of slice number z in the registered dataset. Right: average PWA over
all slices

∑

z PWA(z).

for the registered, testing dataset are reported in Fig. 13. The lowest PWA over all slices
is FlowReg-A+O followed by FlowReg-A, indicating there is maximal intensity and spatial
alignment across slices using the proposed work. The highest error is seen by Demons, SE,
and VoxelMorph.

The last spatial alignment measure investigated is the DSC between the registered
brain masks from the moving volumes, and the brain mask of the fixed atlas. Figure 14
and Table 2 contains the average DSC values for each registration method over the testing
dataset. The largest agreement is for ANTs, SE, FlowReg-A, and FlowReg-A+O. The
lowest spatial overlap comes from the Demons method. To visualize spatial alignment, a
heatmap is generated for each method by averaging the binary masks of the same slice in
the registered output. Figure 15 shows the heatmaps for a bottom, middle and top slice over
all methods. As can be seen, there is consistency in the lower slices for FlowReg, as there is
minimal ghosting artifacts in the heatmap. However, with other methods, such as Demons
or VM, there are many areas with inconsistencies in the posterior regions (likely where the
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Figure 14: Dice Similarity Coefficient (DSC) between fixed and registered brain masks.

ocular orbits occur). In the middle slices, most methods seem to have good alignment, and
the performance is somewhat comparable on the top slices.

Figure 15: The average brain mask generated by each registration method. Red areas
indicate high agreement, and blue indicates poor agreement.

3.3.3 Intensity Alignment

The last set of evaluation metrics investigated are the intensity alignment measures, and the
average over the entire testing dataset is shown in Table 2. Intensity alignment measures,
mutual information (MI) and correlation (R), investigate how the probability mass func-
tions of the registered volumes compare to the atlas’ intensity distribution. The intensity
profiles in neuroimages are related to anatomy and pathology. Fig. 16 shows boxplots of
the MI and R metrics over the entire testing dataset. For both metrics, the highest MI and
correlation are reported by FlowReg-A+O and FlowReg-A followed by ANTs. Therefore,
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Figure 16: Intensity alignment validation over 464 testing volumes. Box and whisker plots.
Left: mutual information. Right: correlation coefficient.

the proposed work maintains and matches the intensity histograms the best over all com-
peting methods.

If a registration method generates images that have a high degree of spatial align-
ment, regions of high correspondence will have the same intensity characteristics reflected
in the average. If different tissue regions are being averaged, however, there will be mix-
ing of neighbouring tissues and therefore, the intensity profile of the images will not be
maintained. To measure this, registration-specific atlases are generated via synchronized
averaging. The quality of these atlases A(x, y, z) are quantitatively compared to the original
template F (x, y, z) by examining histogram differences via Mean Absolute Intensity Differ-
ences (MAID). In FLAIR MRI, histogram peaks represent significant tissue regions such
as brain matter and cerebrospinal fluid (CSF). These peaks should be aligned in the newly
generated atlas A(x, y, z) with the original atlas F (x, y, z). Fig. 17 (left) shows the intensity
histograms (normalized) of the atlases A(x, y, z) compared to the histogram of the original
fixed volume. It can be seen that the histogram of the FlowReg-O+A and and FlowRegA are
very similar to that of the atlas for the middle (major) peak (which corresponds to the brain
tissue). To quantitatively measure the similarity of histograms, the MAID is computed be-
tween the original and new generated atlases in Figure 17 (middle) and the lowest error
is found with FlowReg-A. We analyze a second set of results for a thresholded histogram
that removes the background noise peak from the histogram. This MAID, computed on the
histogram without the noise peak is called MAID − zp and is shown in Figure 17 (right).
In these results, ANTs, FlowReg-A, and FlowReg-A+O provide the best performance in-
dicating good spatial and intensity alignment in the registered outputs for these methods.
The performance of FlowReg-A+O and FlowReg-A are similar, indicating FlowReg-O does
not distort the intensity histogram. The highest error is observed in Demons.

4. Discussion

Table 2 contains the summary of all the validation metrics. In comparison to all methods
(ANTs, Demons, SE, VM ), the proposed FlowReg framework (FlowReg-A+O) achieves the
highest performance across the spatial alignment metric (PWA) which indicates excellent
slice to slice correspondence between registered datasets and the fixed volume. This can be
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Figure 17: Left: Intensity distribution histograms of the atlases A(x, y, z) created through
registering all test volumes per method. Middle: MAID computed between
intensity PMFs of the generated atlas and the original atlas (fixed). Right:
MAID for PMFs with the background-nulled from bin 0 to 20 (MAIDzp)

attributed to the initial alignment of the volumes in 3D using the affine component, followed
by the slice-by-slice refinement using optical flow in 2D that performs fine pixel movements.
FlowReg also achieves high intensity similarity based on the MI and R metrics, which in-
dicates the histograms of the registered volumes and that of the atlas are aligned. The
correlation loss function may contribute to this phenomena since it enforces global intensity
similarity between images. Since intensity distributions are related to the tissue content
in the images, if the histograms are more aligned in the registered images, it will make
subsequent analysis consistent and comparable across patients. FlowReg-A also was a top
performer for several metrics, namely the volumetric ratio metric for the ventricles (∆Vvent)
and the Mean Absolute Intensity Difference (MAID). The ventricular integrity metric indi-
cates that the related shapes and volumes are maintained the best using FlowReg-A. The
intensity similarity can also be attributed to the correlation loss function in the affine net-
work. Among the deep learning frameworks either FlowReg-A or FlowReg-A+O outperform
Voxelmorph in all metrics except for the structural integrity metric for the brain. This may
be due to the deformation field calculated by Voxelmorph, which was found to have lower
vector magnitudes at the periphery of the head indicating little displacement in these re-
gions. Since Voxelmorph was trained and tested for other neuroimaging sequences (i.e. T1),
perhaps this architecture is not suited for FLAIR neuroimages.

Overall, FlowReg maintains anatomical and structure features while obtaining high in-
tensity similarity to the fixed volume and excellent spatial alignment across the testing
datasets. This can be attributed to several reasons. First, FlowReg-A performs the affine
alignment in 3D which will globally deform the volume to achieve maximal correspondence.
Further, FlowReg-O calculates the 2D displacement field and refines the movement of pix-
els on a slice-by-slice basis. The optical flow model architecture has been adapted from
the video processing field to medical images. The advantage of this approach is that it
is able to calculate small differences and perform the refinements needed to obtain corre-
spondence. The three component loss function (photometric, smoothness, and correlation)
perform three separate but important roles. The photometric loss, which is a pixelwise
difference, ensures that pixels with similar intensities are displaced to areas of similar in-
tensities and is the refinement component. The role of the smoothness loss is to ensure that
for the calculated optical flow, continuity of the flow fields is encouraged. The correlation
loss operates on the overall histogram intensity alignment between the moving and fixed
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Table 3: Average run-time for ten testing 3D volumes for each registration method.

ANTs Demons SE VM-only FlowReg-A FlowReg-O

27.81s 22.77s 40.33s 4.31s 1.72s 6.90s

volumes. Finally, the Charbonnier penalty function was used to reduce the effect of gross
outliers to ensure the structural integrity of anatomy and pathology was maintained. It
can be seen that with the combination of these loss functions, FlowReg-A+O performs the
best for the intensity measures, MI, R, and for the spatial alignment measure PWA and is
likely due to the complementary nature of the loss components. As the deformation vector
field is generated for each pixel in the moving image, the photometric loss specifically min-
imizes the difference between similar intensity pixels in the moving and fixed images and
can therefore regress accurate vectors for pixel displacement. Similarly, the correlation loss
component operates on the global intensity differences and contributes to accurate global
flow regression.

To investigate the relative run-time speed for each algorithm, each method was eval-
uated on ten randomly sampled volumes from the testing set. The average computation
times per method for these ten volumes are shown in Table 3. Note that the times reported
for FlowReg are for the two components FlowReg-A and FlowReg-O separately. For Vox-
elmorph, only the test time for the CNN network is shown. As can be seen, the fastest
algorithm is FlowReg-A with an average time of 1.72 seconds per 3D volume, followed by
Voxelmorph at 4.31s and then FlowReg-O with 6.9s. Given the testing time for FlowReg-A
and FlowReg-O, the total time to register a volume (3D) and all the slices (2D) is 8.62s.
Compared to the traditional approaches, the proposed method is faster by 2.6-4.7×. It is
to be noted that the time reported for Voxelmorph is only the CNN network testing time,
but for optimal performance affine transformation is required first using tools such as ANTs
which adds additional computation time. Further, all deep learning methods outperform
the traditional iterative methods by a large margin, indicating that the transferable na-
ture of CNN-based registration tools are efficient and effective. As with many CNN-based
systems, the challenge is the training time; the average training time on the 3714 training
volumes for FlowReg-A was about 18 hours, while FlowReg-O was just over 5 days. As
training can be completed offline, it is not too big of a concern for real-time applications.

Another interesting observation is that for WML structural integrity, all CNN-based
solutions perform poorly compared to classic iterative-based approaches. Hyperintense le-
sions are usually the brightest spots in a brain MRI, thus when performing an alignment
to a template (such as an averaged atlas) these hyperintense regions will be represented as
areas of high dissimilarities. A network with a loss function that attempts to mitigate pixel
differences between the two volumes will attempt to over-correct these areas and displace
the pixels in undesirable ways. This displacement will change the registered volume’s WMLs
from a structural and volumetric perspective. A possible solution that can be investigated
to mitigate this problem in future works is lesion-inpainting (Sdika and Pelletier, 2009)
prior to registration. Inpainting frameworks mask the lesions with the average intensities
of the surrounding brain tissue. However, this approach would require either manual or
automatic segmentation of WMLs which is an active area of research. Additionally, future

23



Mocanu et al.

works could also consider the incorporation of skull-stripping as a preprocessing step, to
remove all non-cerebral tissues. This could improve performance since a lot the warping
is occurring in regions where pixel intensities are high, which correspond to extra-cranial
structures. If these areas are removed it is possible that more of the pixel movement would
be focused to resolve areas of higher differences in the brain.

When considering all validation groups and metrics, the traditional iterative based reg-
istration methods perform well over many of the structural integrity metrics such as ∆Vwml,
∆PVvent, ∆PVwml, indicating that these methods do not deform the WML and ventricles
as much as the CNN-based methods. In terms of Demons, although it does perform the
best according to the ∆V and ∆PV metrics, when visually examining several volumes as
depicted in Figure 7, the cerebral tissue seems warped in a manner that is uncharacteristic
of FLAIR MRI. Further, structural changes are visible around the edges of the sulci and the
WML themselves have been smeared and blended with the remainder of the gray matter of
the brain. A limitation of the design is noted in the FlowReg-A registration when it comes
to the ∆V and ∆PV . As FlowReg-A operates on the volume using an affine matrix, which is
a global transformation that equally warps every voxel in the volume, the proportional and
volumetric difference of a structure before and after registration should remain unchanged.
In our experiments we did notice differences for FlowReg-A and reported the differences.
This outcome is likely due to slice thickness, limited pixel resolution, and the slice gap of
3mm during image acquisition. ANTs maintains moderate distortion over all structural
integrity metrics and the best for the ventricular metrics. One reason for this could be due
to the Symmetric Normalization, where both the moving and the fixed volumes are warped
symmetrically to a similarity ”mid-point” (Avants et al., 2008). SimpleElastix, another
iterative-based registration method, performs well for the Head Angle metric likely due to
the two step process of an affine alignment followed by a B-spline transform (Klein et al.,
2010). One major downside of using iterative-based methods for image registration is the
lengthy computation for 3D neuroimaging volumes (as is seen in Table 2) and the lack of
transferring this knowledge to new image pairs.

Medical image registration is a preprocessing tool that can map two images to the same
geometric space. Once images are registered, direct spatial comparisons can be made be-
tween the two images to quantify disease progression, treatment efficacy, pathology changes,
and age-specific anatomical changes. The proposed FlowReg model is able to warp a moving
image to a fixed image space in an unsupervised manner, and is computed in a two-phase
approach: initially for gross alignment in 3D, followed by fine-tuning in 2D on an image-
by-image basis which is a novel approach. Alongside the registration framework, several
clinically relevant validation metrics are proposed that we hope will be used by researchers
in the future.

5. Conclusion

In this work we propose FlowReg, a deep learning-based framework that performs unsu-
pervised image registration for multicentre FLAIR MRI. The system is composed of two
architectures: FlowReg-A which affinely corrects for gross differences between moving and
fixed volumes in 3D followed by FlowReg-O which performs pixelwise deformations on a
slice-by-slice basis for fine tuning in 2D. Using 464 testing volumes, with 70 of the imaging
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volumes having ground truth manual delineations for ventricles and lesions, the proposed
method was compared to ANTs, Demons, SE, and Voxelmorph. To quantitatively assess the
performance of the registration tools, several proposed validation metrics were used. These
metrics focused on structural integrity of tissues, spatial alignment, and intensity similarity.
Tissue integrity was analyzed using volumetric and structural measures: rolumetric ratio,
proportional volume (PV), and structural similarity distance (SSD). Spatial alignment was
analyzed with a Head Angle with respect to the saggital plane, Pixelwise Agreement, and
Brain DSC. The intensity metrics measured the similarity in intensities and intensity dis-
trubitons of the moving and fixed volumes with Mutual Information (MI), correlation (R),
and Mean Intensity Difference.

Experimental results show FlowReg (FlowReg-A+O) performs better than iterative-
based registration algorithms for intensity and spatial alignment metrics, indicating that
FlowReg delivers optimal intensity and spatial alignment between moving and fixed volumes.
Among the deep learning frameworks evaluated, FlowReg-A or FlowReg-A+O provided the
highest performance over all but one of the metrics. In terms of structural integrity metrics,
FlowReg provided moderate (or best) performance for the brain, ventricle andWML objects.
The success of the proposed work can be attributed to: 1) the two-step registration process
that consists of affine followed by optical flow deformations and 2) the three component loss
function in optical flow that encourages global intensity similarity, while minimizing large
deformations. Finally, the novel validation metrics to assess medical image registration
provide the necessary context when compared to other registration methods.
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Hans J. Johnson, M. McCormick, L. Ibáñez, and The Insight Software Consortium. The
ITK Software Guide. Kitware, Inc., third edition, 2013. URL http://www.itk.org/

ItkSoftwareGuide.pdf. In press.

April Khademi, Anastasios Venetsanopoulos, and Alan R Moody. Robust white matter
lesion segmentation in flair mri. IEEE Transactions on Biomedical Engineering, 59(3):
860–871, 2011.

April Khademi, Brittany Reiche, Justin DiGregorio, Giordano Arezza, and Alan R Moody.
Whole volume brain extraction for multi-centre, multi-disease flair mri datasets. Magnetic
Resonance Imaging, 66:116–130, 2020.

Ki Woong Kim, James R MacFall, and Martha E Payne. Classification of white matter
lesions on magnetic resonance imaging in elderly persons. Biological psychiatry, 64(4):
273–280, 2008.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Stefan Klein, Marius Staring, Keelin Murphy, Max A Viergever, Josien PW Pluim, et al.
Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on
Medical Imaging, 29(1):196–205, 2010.

K Kobayashi, M Hayashi, H Nakano, Y Fukutani, K Sasaki, M Shimazaki, and Y Koshino.
Apoptosis of astrocytes with enhanced lysosomal activity and oligodendrocytes in white
matter lesions in alzheimer’s disease. Neuropathology and applied neurobiology, 28(3):
238–251, 2002.

Zhiqiang Lao, Dinggang Shen, Dengfeng Liu, Abbas F Jawad, Elias R Melhem, Lenore J
Launer, R Nick Bryan, and Christos Davatzikos. Computer-assisted segmentation of
white matter lesions in 3d mr images using support vector machine. Academic radiology,
15(3):300–313, 2008.

28

http://www.itk.org/ItkSoftwareGuide.pdf
http://www.itk.org/ItkSoftwareGuide.pdf


FlowReg: CNN Registration

Yanxi Liu, Robert T Collins, and William E Rothfus. Robust midsagittal plane extraction
from normal and pathological 3-d neuroradiology images. IEEE Transactions on Medical
Imaging, 20(3):175–192, 2001.

Frederik Maes, Andre Collignon, Dirk Vandermeulen, Guy Marchal, and Paul Suetens. Mul-
timodality image registration by maximization of mutual information. IEEE transactions
on Medical Imaging, 16(2):187–198, 1997.

Paul Malloy, Stephen Correia, Glenn Stebbins, and David H Laidlaw. Neuroimaging of
white matter in aging and dementia. The Clinical Neuropsychologist, 21(1):73–109, 2007.

VRS Mani and S Arivazhagan. Survey of medical image registration. Journal of Biomedical
Engineering and Technology, 1(2):8–25, 2013.

Kasper Marstal, Floris Berendsen, Marius Staring, and Stefan Klein. Simpleelastix: A user-
friendly, multi-lingual library for medical image registration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pages 134–142,
2016.

Susanne G Mueller, Michael W Weiner, Leon J Thal, Ronald C Petersen, Clifford Jack,
William Jagust, John Q Trojanowski, Arthur W Toga, and Laurel Beckett. The
alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics, 15(4):869–877, 2005.

Ketil Oppedal, Trygve Eftestøl, Kjersti Engan, Mona K Beyer, and Dag Aarsland. Classi-
fying dementia using local binary patterns from different regions in magnetic resonance
images. Journal of Biomedical Imaging, 2015:1–14, 2015.

Xavier Pennec, Pascal Cachier, and Nicholas Ayache. Understanding the “demon’s algo-
rithm”: 3d non-rigid registration by gradient descent. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 597–605. Springer,
1999.

Renzo Phellan, Alexandre X Falcao, and Jayaram Udupa. Improving atlas-based medical
image segmentation with a relaxed object search. In International Symposium Computa-
tional Modeling of Objects Represented in Images, pages 152–163. Springer, 2014.

Olivier Piguet, LJ Ridley, DA Grayson, HP Bennett, H Creasey, TC Lye, and G An-
thony Broe. Comparing white matter lesions on t2 and flair mri in the sydney older
persons study. European journal of neurology, 12(5):399–402, 2005.

Hafiz Rehman and Sungon Lee. An efficient automatic midsagittal plane extraction in brain
mri. Applied Sciences, 8(11):2203, 2018.

Nicolae Sarbu, Robert Y Shih, Robert V Jones, Iren Horkayne-Szakaly, Laura Oleaga, and
James G Smirniotopoulos. White matter diseases with radiologic-pathologic correlation.
Radiographics, 36(5):1426–1447, 2016.
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Appendix A

Imaging Dataset Details

A summary of the datasets used, and demographical information are shown in Table 4.
The ADNI database consisted of images from three MR scanner manufacturers: General
Electric (n = 1075), Phillips Medical Systems (n = 848), and Siemens (n = 2076) with 18
different models in total. In CAIN there is five different models across three vendors with
General Electric (n = 181), Phillips Medical Systems (n = 230), and Siemens (n = 289).
The number of cases per scanner model and vendor are shown in Table 5 along with the
ranges of the acquisition parameters. As can be seen, this dataset represents a diverse
multicentre dataset, with varying scanners, diseases, voxel resolutions, imaging acquisition
parameters and pixel resolutions. Therefore, this dataset will give insight into how each
registration method can generalize in multicentre data.

Table 4: Experimental datasets used in this work (CAIN and ADNI).

Dataset # Subjects # Volumes # Slices # Centers Age Sex F/M (%)

CAIN 400 700 31,500 9 73.87± 8.29 38.0/58.6
ADNI 900 4263 250,00 60 73.48± 7.37 46.5/53.5

Supplemental Tables and Figures

Figure 18: The total loss values during training for FlowReg-O at different α values in the
Charbonnier penalty function (Eqn. 5).
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Dataset Vendor Model
TR
(ms)

TE
(ms)

TI
(ms)

Magnetic
Field (B)

Pixel Size
(mm2)

Slice
Thickness
(mm)

N

ADNI
GE Medical
Systems

Discovery
MR750/w

11000
149.42 -
153.13

2250 3 0.7386 5 614

Signa HDxt
10002 -
11002

149.10 -
192.65

2200 -
2250

1.5 - 3 0.7386 - 0.8789 5 - 6 461

Phillips
Medical
Systems

Ingenia 9000 90 2500 3 0.7386 5 83

Achieva 9000 90 2500 3 0.6104 - 0.7386 5 520
Gemini 9000 90 2500 3 0.7386 5 35
Ingenuity 9000 90 2500 3 0.7386 5 19

Intera
6000 -
9000

90 -
140

2000 -
2500

1.5 - 3 0.7386 - 0.8789 5 191

Siemens
Biograph
mMR

9000 91 2500 3 0.7386 5 13

Prisma 9000 91 2500 3 0.7386 5 5
Skyra 9000 91 2500 3 0.7386 5 213
SymphonyTim 10000 125 2200 1.5 0.8789 5 2

TrioTim
9000 -
11000

90 -
149

2250 -
2800

3 0.7386 - 1 2 - 5 1332

Verio 9000 91 2500 3 0.7386 - 1.0315 5 511

CAIN
GE Medical
Systems

Discovery
MR750

8000 -
9995

140.84 -
150.24

2200 -
2390

3 0.7386 - 0.8789 3 181

Phillips
Medical
Systems

Achieva
9000 -
11000

125 2800 3 0.1837 3 230

Siemens InteraMR 9000 119 2500 3 1 3 14
Skyra 9000 119 2500 3 1 3 162

TrioTim 9000
117 -
122

2500 3 1 3 113
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Table 6: FlowReg-A model, details of architecture in Figure 2.

Layer Filters Kernel Stride Activation

fixedInput - - - -
movingInput - - - -
concatenate - - - -
conv3D 16 7x7x7 2, 2, 1 ReLu
conv3D 32 5x5x5 2, 2, 1 ReLu
conv3D 64 3x3x3 2, 2, 2 ReLu
conv3D 128 3x3x3 2, 2, 2 ReLu
conv3D 256 3x3x3 2, 2, 2 ReLu
conv3D 512 3x3x3 2, 2, 2 ReLu
flatten - - - -
dense 12 - - Linear

Figure 19: Single slices from five volumes registered using FlowReg-O at various α values
for the Charbonnier penalty.
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Table 7: FlowReg-O model details of architecture in Figure 3.

Layer Filters Kernel Strides Activation

fixedInput - - - -
movingInput - - - -
concatenate - - - -
conv2D 64 7x7 2, 2 L-ReLu
conv2D 128 5x5 2, 2 L-ReLu
conv2D 256 5x5 2, 2 L-ReLu
conv2D 256 3x3 1, 1 L-ReLu
conv2D 512 3x3 2, 2 L-ReLu
conv2D 512 3x3 1, 1 L-ReLu
conv2D 512 3x3 2, 2 L-ReLu
conv2D 512 3x3 1, 1 L-ReLu
conv2D 1024 3x3 2, 2 L-ReLu
conv2D 1024 3x3 1, 1 L-ReLu
conv2D 2 3x3 1, 1 -
upconv2D 2 4x4 2, 2 -
upconv2D 512 4x4 2, 2 L-ReLu
conv2D 2 3x3 1, 1 -
upconv2D 2 4x4 2, 2 -
upconv2D 256 4x4 2, 2 L-ReLu
conv2D 2 3x3 1, 1 -
upconv2D 2 4x4 2, 2 -
upconv2D 128 4x4 2, 2 L-ReLu
conv2D 2 3x3 1, 1 -
upconv2D 2 4x4 2, 2 -
upconv2D 64 4x4 2, 2 L-ReLu
conv2D 2 3x3 1, 1 -
upconv2D 2 4x4 2, 2 -
upconv2D 32 4x4 2, 2 L-ReLu
conv2D 2 3x3 1, 1 -
upconv2D 2 4x4 2, 2 -
upconv2D 16 4x4 2, 2 L-ReLu
conv2D 2 3x3 2, 2 -
resampler - - - -
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Figure 20: Flow magnitudes of deformation fields from FlowReg-O at various α values.
Images correspond to slices in Figure 19. Blue indicates areas of low flow vector
magnitude and red indicates larger vector magnitude.
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Figure 21: Registration metrics extraction process. HA = Head Angle, MI = Mutual Infor-
mation, R = Correlation Coefficient, PV = Proportional Volume, SSD = Surface
to Surface Distance.

Appendix B

Here we describe in detail the calculations of each registration metric. The block diagram
to compute the metrics is shown in Figure 21.

Structural Integrity: Proportional Volume — PV

If a registration scheme maintains the structural integrity of anatomical and pathological
objects, the relative volume of objects should remain approximately the same after registra-
tion. Using binary masks of anatomical or pathological objects of interest, the proportional
volume (PV) is proposed to measure the volume of a structure (vols) compared to the total
brain volume (volb), as in:

PV =
vols

volb
. (8)

The volume of objects in physical dimensions is found by multiplying the number of pixels
by voxel resolution:

vol = Vx × Vy × Vz × np, (9)

where vol is the volume in mm3, Vx and Vy are the pixel width and height and Vz is the
slice-thickness.

The difference between the PV before and after registration can be investigated to
analyze how registration changes the proportion of each structure with respect to the brain.
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The difference in PV before and after registration can be measured by

∆PV = PVorig − PVreg. (10)

where PVorig and PVreg are the PV computed before and after registration. In this work,
two structures of interest are examined for vols: white matter lesions (WML) and ventricles
since these objects are important for disease evaluation. Ideally the ratio of object volumes
to the total brain volume would stay the same before and after registration

Structural Integrity: Volume Ratio — ∆Vs

In addition to the ∆PV which looks at proportional changes in volumes before and after
registration, the volume ratio ∆Vs is also defined on a per object basis. The volume ratio
investigates the volumes of objects before and after registration, as in

∆Vs =
volorig

volreg
, (11)

where volorig and volreg are the volumes of object s before and after registration, respec-
tively. The volume ratio is computed for three objects s: the brain, WML and ventricles.
This metric quantifies the overall change in volume before and after registration (the best
ratio is a value equal to 1).

Structural Integrity: Surface to Surface Distance — SSD

A third structural integrity measure, SSD, is proposed to measure the integrity between
objects in the brain before and after registration. In particular, the SSD measures how
the overall shape of a structure changes after registration. To compute the SSD, binary
masks of the brain B(x, y, z), and structure S(x, y, z) of interest are obtained, and an edge
map is obtained to find EB(x, y, z) and ES(x, y, z), respectively. For every non-zero pixel
coordinate (x, y, z) in the boundary of the structure, i.e. ES(x, y, z) = 1, the minimum
Euclidean distance from the structure’s boundary to the brain edge is found. This closest
surface-to-surface distance between pixels in the objects’ boundaries is averaged over the
entire structure of interest to compute the average SSD

SSD =
1

N

[

N
∑

i=1

argmin(xs,ys,zs)∈S

(√
p+ q + r

)

]

, (12)

where p = (xs − xb)
2, q = (ys − yb)

2, r = (zs − zb)
2 are differences between points in the

edge maps of Es and Eb, (xs, ys, zs) and (xb, yb, zb) are triplets of the co-ordinates in the
binary edge maps for the structural objects of interest and the brain, respectively, and N

is the number of points in the structure’s boundary. The overall structural integrity of
objects should be maintained with respect to the brain structure after registration, i.e. the
distance between the objects and the brain shape should not be significantly altered. This
metric can be used to investigate the extent in which anatomical shapes are maintained or
distorted by registration by examining the difference in SSD before and after registration
by

∆SSD =
SSDorig − SSDreg

SSDorig
, (13)
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where SSDorig and SSDreg is the SSD before and after registration, respectively.

Spatial Alignment: Head Angle — HA

Head Angle (HA) is an orientation metric that measures the extent to which the head
is rotated with respect to the midsaggital plane. For properly registered data (especially
for data that is being aligned to an atlas), the HA should be close to zero with the head
being aligned along the midstagittal plane. To measure the HA, a combination of Principal
Component Analysis (PCA) and angle sweep as described in Rehman and Lee (2018);
Liu et al. (2001) is adopted to find the head orientation of registered and unregistered
data. The MRI volume is first binarized using a combination of adaptive thresholding and
opening and closing techniques to approximately segment the head. The coordinates of
each non-zero pixel in this 2D mask are stored in two vectors (one for each coordinate)
and the eigenvectors of these arrays are found through PCA. The directions of eigenvectors
specify the orientation of the major axes of the approximated ellipse for the head region
in a slice with respect to the vertical saggital plane. Eigenvalues are the magnitude of the
eigenvectors (or length of the axes). The largest eigenvalue dictates the direction of the
longest axis which is approximately the head angle θ1. For improved robustness to outliers
and improve the precision of the estimated angles, a secondary refinement step is utilized
to compute the refined HA θ2. Every second slice from the middle (axial) slice to the top
of the head are used and the three smallest angles over all slices are taken as candidates
for further refinement.The lowest angles are selected as they are the most representative of
head orientation. Each selected slice is mirrored and rotated according to an angle sweep
from −2 × θ1 < θ2 < 2 × θ1 at 0.5◦ angle increments. At every increment of the rotation,
the cross-correlation between the mirrored rotating image and the original is calculated and
a score is recorded. The angle at which the highest score is selected for the optimized value
θ2. The final HA is obtained by summing the respective coarse and fine angle estimates,
i.e. θ = θ1 + θ2.

Spatial Alignment: Pixelwise Agreement — PWA

Physical alignment in 3D means that within a registered dataset, each subject should have
high correspondence between slices, i.e. the same slice from each subject should account
for the same anatomy across patients. To measure this effect, a metric called Pixelwise
Agreement (PWA) is proposed. It considers the same slice across all the registered volumes
in a dataset and compares them to the same slice from an atlas template (the fixed volume)
through the mean-squared error. The sum of the error is computed for each slice, to obtain
a slice-wise estimate of the difference between the same slice in the atlas as compared to
each of the same slices from the registered data:

PWA(z) =
1

Nj

1

Nxy

∑

j∈J

∑

(x,y)

(Mj(x, y, z)− F (x, y, z))2 (14)

where z is the slice number for which PWA is computed, Mj(x, y, z) is the moving test
volume j from a total of Nj volumes from the dataset, Nxy is the number of voxels in
slice z and F (x, y, z) is the atlas. Thus, at each slice, for the entire dataset, the PWA
compares every slice to the same slice of the atlas. Low PWA indicates high-degree of
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correspondence between all the slices from the registered dataset and that of the atlas and
considers both spatial and intensity alignment. If there is poor spatial alignment, there
will be poor intensity alignment since different tissues will be overlapping during averaging.
The slice-based PWA may also be summed to get a total volume PWA, i.e. 1

Nz

∑

z PWA(z)
where Nz is the number of slices.

Spatial Alignment: Dice Similarity Coefficient — DSC

To further examine spatial alignment, manually delineated brain masks from the moving
volumes M(x, y, z) were warped with the calculated deformation and compared to the brain
mask of the atlas template F (x, y, z) through the Dice Similarity Coefficient (DSC):

DSC =
2|bM ∩ bF |
|bM |+ |bF |

, (15)

where bM is the registered, moving brain mask and bF is the brain mask of the atlas
template. DSC will be higher when there is a high-degree of overlap between the brain
regions from the atlas and moving volume. For visual inspection of overlap, all registered
brain masks were averaged to summarize alignment accuracy as a heatmap.

Intensity Similarity: Mutual Information — MI

The first intensity-based metric used to investigate registration performance is the widely
adopted Mutual Information (MI) metric that describes the statistical dependence between
two random variables. If there is excellent alignment between the moving and fixed images,
there will be tight clustering in the joint probability mass functions. The MI of two volumes
M(x, y, z) and F (x, y, z) with PMFs of pM (i) and pF (i) is calculated as follows:

I(M ;F ) =
∑

f∈F

∑

m∈M

p(M,F )(m, f) log

(

p(M,F )(m, f)

pM (m)pF (f)

)

(16)

where p(M,F )(m, f) is the joint probability mass function of the intensities of the moving
and fixed volumes, pM (m) is the marginal probability of the moving volume intensities, and
pF (f) is the marginal probability for the fixed volume.

Intensity Similarity: Pearson Correlation Coefficient — r

The Pearson Correlation Coefficient, r, is used as the second intensity measure which quan-
tifies the correlation between the intensities in the movingM(x, y, z) and F (x, y, z) volumes:

r(M,F ) =

∑n
i=1(Mi −M)(Fi − F )

√

∑n
i=1(Mi −M)2

√

∑n
i=1(Fi − F )2

(17)

where N is the number of voxels in a volume, Mi and Fi are the pixels from the moving
and fixed volumes, and F and M are the respective volume mean intensities.
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Intensity Similarity: Mean Intensity Difference — MAID

The last registration performance metric considered is the mean intensity difference, MAID,
which measures the quality of a newly generated atlas A(x, y, z) compared to the original
atlas (fixed volume). To create the new atlas, the moving volumes M(x, y, z) from a dataset
are registered to the original atlas F (x, y, z) and then the same slices are averaged across the
registered dataset generating the atlas A(x, y, z). The intensity histograms of the original
F (x, y, z) and newly generated atlases A(x, y, z) are compared through the mean absolute
error to get the MAID, as in

MAID(A,F ) =
1

Ni

∑

i

|pA(i)− pF (i)| (18)

where pF and pA are the probability distributions of the intensities for the fixed (original at-
las) and moving volumes (new atlas) and Ni is the maximum number of intensities. Changes
to the intensity distribution of registered images could arise from poor slice alignment. The
higher the similarity between the new atlas and the original, the lower the error between
the two.
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