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Abstract

The positive outcome of a trauma intervention depends on an intraoperative evaluation of
inserted metallic implants. Due to occurring metal artifacts, the quality of this evaluation
heavily depends on the performance of so-called Metal Artifact Reduction methods (MAR).
The majority of these MAR methods require prior segmentation of the inserted metal ob-
jects. Therefore, typically a rather simple thresholding-based segmentation method in the
reconstructed 3D volume is applied, despite some major disadvantages. With this publi-
cation, the potential of shifting the segmentation task to a learning-based, view-consistent
2D projection-based method on the downstream MAR’s outcome is investigated. For seg-
menting the present metal, a rather simple learning-based 2D projection-wise segmentation
network that is trained using real data acquired during cadaver studies, is examined. To
overcome the disadvantages that come along with a 2D projection-wise segmentation, a
Consistency Filter is proposed. The influence of the shifted segmentation domain is inves-
tigated by comparing the results of the standard fsMAR with a modified fsMAR version
using the new segmentation masks. With a quantitative and qualitative evaluation on real
cadaver data, the investigated approach showed an increased MAR performance and a high
insensitivity against metal artifacts. For cases with metal outside the reconstruction’s FoV
or cases with vanishing metal, a significant reduction in artifacts could be shown. Thus,
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increases of up to roughly 3 dB w.r.t. the mean PSNR metric over all slices and up to 9 dB
for single slices were achieved. The shown results reveal a beneficial influence of the shift
to a 2D-based segmentation method on real data for downstream use with a MAR method,
like the fsMAR. The nature of the method further suggests the same beneficial behavior
for all (also recent data-driven) MAR methods, that for now comprise a 3D-volume-based
segmentation step for subsequent inpainting.

Keywords: Metal Segmentation, Metal Artifact Reduction, Cone-Beam Computed To-
mography, Trauma Intervention

1. Introduction

In the context of trauma and orthopedic interventions, the intraoperative evaluation of a
successful fracture reduction and the correct positioning of the inserted metal implants are
crucial for the outcome of the intervention and the patient’s healing process. For that eval-
uation, in many cases, a 3D reconstruction is vital. With current generations of movable
C-arm systems, like the Siemens Cios Spin©, this is possible inside the operation room
with a limited amount of additional effort. However, due to so-called metal artifacts and
the corresponding lack of image quality, even these 3D reconstructions do not allow for a
profound evaluation. Consequently, there exists the necessity of well-functioning Metal Ar-
tifact Reduction methods (MAR). Alongside more traditional MAR methods (Meyer et al.,
2010; Xinhui et al., 2008) like e.g. the frequency split metal artifact reduction (fsMAR)
(Meyer et al., 2012), in recent years, many data-driven MAR approaches were developed
(Claus et al., 2017; Ghani and Karl, 2018; Gjesteby et al., 2017; Huang et al., 2018; Park
et al., 2018; Ketcha et al., 2021). Besides the majority of the more recent MAR approaches,
the fsMAR is an inpainting-based MAR, which typically consists of three major steps as
shown in Fig. 1, (1) segmentation of the present metal objects in the initial unprocessed
3D reconstruction (thus containing metal artifacts), (2) 2D projection/sinogram-based in-
painting in the previously segmented metal regions and (3) a so-called metal insertion in the
subsequently reconstructed artifact-reduced 3D volume. Consequently, the MAR’s outcome
heavily depends on the quality of the performed metal segmentation. Since non-segmented
metal will not be processed by the downstream steps of the MAR method at all, they are
still causing artifacts in the final processed reconstruction (cf. Fig. 8, TS 3, fsMAR). Falsely
segmented anatomical structures, however, will potentially cause blurry or completely van-
ished representations of the very same. Nonetheless, despite its importance (Stille et al.,
2013; Yu et al., 2021), the segmentation process itself and its influence on the different
MAR’s outcomes is an underrepresented research topic.

The majority of the mentioned MAR methods solve the segmentation task by a 3D
volume-based thresholding mechanism, whose 3D mask is then forward-projected to the
projection/sinogram-domain for downstream inpainting (cf. Fig. 1, B)) , although that has
two clear disadvantages. First, the metal segmentation is done on the initial and thus metal-
artifact-corrupted 3D reconstruction. This severely aggravates the segmentation task or
even makes it completely impossible, e.g. for cases with vanishing intensity and contrast due
to e.g. photon starvation or scatter (cf. failed mask in Fig. 5, c)). The second disadvantage
of the performed 3D-volume-based metal segmentation is caused by the fact that only those
metal objects can be detected, that lie inside the field-of-view (FoV) of the corresponding
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reconstruction. However, the undetectable metal outside the FoV can still cause artifacts
spreading across the whole reconstruction. In trauma interventions, where a high amount
of metallic surgical instruments/tools and K-wires exceeding the FoV are used, this is a
common case.

As an alternative to a segmentation of the metal in the 3D reconstructed volume,
there exists the possibility of solving that task on the 2D projection images. However,
2D projection-based approaches need to cope with a lower signal-to-noise ratio (SNR). Fur-
ther, a threshold for the segmentation of metal is not well defined in the projection domain.
This is due to the pixel intensity being proportional to the integral of the different materials
along the X-ray path. This makes a threshold-based approach impractical. Furthermore,
2D segmentation approaches that work projection-wise cannot account for the necessary
consistency of the segmentation throughout the complete 3D scan’s set of projections. The
resulting inconsistencies in the segmentation lead to so-called secondary artifacts, which
themselves show as disruptive streaks in the final MAR’s reconstructed volume (Barrett
and Keat, 2004). Nonetheless, in contrast to a 3D approach, it holds the advantages of be-
ing able to segment all present metal objects (even those lying outside the reconstruction’s
FoV) and that it does not get deteriorated from metal artifacts like e.g. photon starvation,
which are present in the corresponding 3D reconstructions.

Moreover, in recent years data-driven approaches reached impressive results in natural
image segmentation (Badrinarayanan et al., 2017; Chen et al., 2018; Long et al., 2015),
as well as medical image segmentation tasks. In the context of medical images, the U-Net

proposed by Ronneberger et al. (2015) and other U-Net-based approaches, like the nnU-Net
published by Isensee et al. (2021) had a significant impact.

Considering the mentioned advantages of segmenting even metal outside the FoV of the
reconstructions, as well as the insensitivity of the projection images against metal artifacts,
we investigate a rather simple data-driven, view-consistent 2D projection-based metal seg-
mentation approach, which was initially presented in Gottschalk et al. (2021). To cope with
the disadvantage of potentially missing consistency of the segmentation masks, we coupled
the segmentation network with a subsequent Consistency Filter (CF). Besides the enforce-
ment of the consistency, the major advantage of the CF lies in the simultaneous removal
of false-positive segmentation, as already shown in Gottschalk et al. (2021). However, the
previous publication lacks an evaluation of the benefits of that method in the corresponding
MAR’s reconstructions. The mentioned evaluation is done with a cone-beam-based imple-
mentation of the more classic fsMAR as currently used in the Siemens Cios Spin© C-arm
system. This is because the more recent approaches (Claus et al., 2017; Ghani and Karl,
2018; Gjesteby et al., 2017; Huang et al., 2018; Park et al., 2018; Ketcha et al., 2021) either
does not include an explicit metal segmentation step as Ketcha et al. (2021), or were devel-
oped for CT-based acquisitions (fan-beam geometry). Thus they can not easily applied to
cone-beam-based CT (CBCT) reconstructions (incomparably more complex Radon trans-
form) as typically used in interventional setups. Considering that this work neither claims
to propose a new segmentation approach, nor an overall new MAR method, but rather
investigates potential benefits of shifting the segmentation task from 3D to 2D, using a
non-data-driven base method for the evaluation is reasonable.
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Figure 1: Illustration of the simplified processing steps of an inpainting-based MAR method
as used by e.g. the fsMAR. Further, the modifications done to the segmentation
steps using the proposed method are shown. Whereas A) represents the overall
MAR pipline setting the basis for both variants, B) represents the segmenta-
tion steps done when using a threshold-based 3D segmentation with subsequent
forward-projection of the extracted masks to 2D, C) illustrates the segmentation
step of the proposed modified fsMAR. It consists of a data-driven 2D segmenta-
tion with a subsequent Consistency Filter. The dashed orange arrow originating
from B) denotes the connection used by the standard fsMAR and which is then
replaced by the connection originating from C) when using the proposed segmen-
tation method.

4



View-consistent metal segmentation

Metal Projection Metal-free Projection

Binary DifferenceDifference

Figure 2: The binary GT segmentation mask is generated with the help of the acquired
metal-corrupted and metal-free projections. First, the difference image is gener-
ated by division. Subsequently, it is binarized.

2. Methods

2.1 Acquisition of Data

Training a deep learning-based projection-wise metal segmentation in a supervised fashion
requires the availability of metal corrupted projection images and their corresponding seg-
mentation labels. For real clinical cases, such segmentation labels need to be created by
hand, which oftentimes demands an uneconomically high amount of effort. As a common
alternative, corresponding datasets are created using simulation methods, like e.g. Monte
Carlo simulations like MC-GPU (Badal and Badano, 2009) or the DeepDRR framework
proposed by Unberath et al.. However, simulations cannot completely reproduce the un-
derlying complex physical image formation process and are thus still inferior concerning
clinical realism. To cope with that, the investigated approach is trained using real data,
that was acquired during three cadaver studies of human knees, as well as human spines.
To discard the necessity of hand labeling for the cadaver datasets, two consecutive 3D scans
were performed during these studies – the first scan with and the second scan without metal
implants. Thus, the corresponding segmentation label can simply be generated by dividing
the acquired matching projection images. An example can be seen in Fig. 2. The 3D scans
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were performed using a Siemens Cios Spin© C-arm system. Each of the 3D scans consists
of 400 projection images acquired using an equiangular increment of 0.5◦, thus covering an
angular range of 200◦. The projection images themselves have a size of 976x976 pixels with
a pixel size of 0.310 mm. To generate suitable label data, the difference image needs to be
motion-free. Therefore, neither the acquisition device nor the specimen is allowed to move
in between the two consecutive 3D scans. This was ensured by fixating the specimen with
clamps to the acquisition table and by remote-controlled handling of the C-arm device from
its attached trolley. During the three cadaver studies, 55 matching 3D scans (36 knees, 19
spines) with and without metal could be acquired, thus ending up with a total amount of
22.000 matching 2D projection images. These comprise 3D scans with different amounts
of present metal implants. Furthermore, the positioning of the metal implants varies from
being simply placed on the surface of the skin of the specimen, over being placed directly
on and inside the bone in a non-clinical fashion, to metal implants being correctly placed
with clinical realism. Consequently, the acquired dataset should roughly cover the variety
of surgical interventions, which oftentimes comprise randomly placed metal objects/tools
outside the FoV of the actual reconstruction and different amounts of implants, depending
on the complexity of the fracture. Using these 55 3D scans a 5-fold cross-validation is per-
formed. Therefore, the samples were randomly shuffled and then split into five data chunks
of 11 3D scans each. For each fold of the cross-validation, three data chunks are assigned
for training, one for validation and one for testing. The chunks are selected using a sliding
window, such that each data chunk is once assigned to the test set of a fold. Consequently,
all 55 datasets at hand are once part of the performed evaluation. Alongside the 400 2D
projection images for each of the acquired 3D scans, the C-arm system already provides us
with two reconstructions for each pair of matching scans - one initial non-MAR-processed
reconstruction and one fsMAR-processed reconstruction1. These reconstructed volumes
have a size of 512x512x512 voxels with a voxel size of 0.313 mm.

2.2 Segmentation Framework

2.2.1 Network Architecture

The trained segmentation network is a slight variation of the proposed network in Gottschalk
et al. (2021) and thus is again an adapted U-Net-like network. The network is constructed
with five layers of contraction-blocks and five layers of corresponding expansion-blocks.
Each related pair of contraction and expansion blocks is connected via skip-connections
creating gradient flow shortcuts that help to avoid vanishing gradients during the training
process (Drozdzal et al., 2016). The contraction-blocks consist of two 2D-convolutional lay-
ers followed by one 2D-max-pooling layer. The expansion-blocks comprise a 2D-upsampling
layer followed by two 2D-convolutional layers. All convolutional layers use a 3x3 kernel, rec-
tified linear units (ReLU) as activation function, and a batch normalization is employed.
The last convolutional layer of the network, however, uses a linear activation function. The
network’s first contraction-block generates 32 feature maps and each consecutive block dou-
bles (contraction) or halves (expansion) the number of feature maps. Thus, the network’s

1. All shown reconstructions in this publication are generated using the currently implemented reconstruc-

tion pipeline of the Siemens Cios© Spin C-arm system.
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Figure 3: Illustration of the single steps of the Consistency Filter post-processing.

bottleneck holds the amount of 1024 feature maps. The network is designed such that the
output image size matches the input image size.

To train the network, the acquired RAW data is transformed to line integral data by
applying Lambert-Beer Law (Maier et al., 2018). As explained earlier, the network was
trained five times using the different folds of the cross-validation. For every fold, the network
was trained from scratch to convergence using a batch-size of 8. Apart from applying a
cross-entropy-based loss function, the initial learning rate of 1e−4 was decreased using an
exponential decay and Adam (Kingma and Ba, 2014) was used as optimizer. The weights
are initialized using He initialization (He et al., 2015). Additionally, an online augmentation
scheme, inspired by Isensee et al. (2019), was applied to fully utilize the benefits of patch-
based training and to prevent overfitting. During that augmentation, randomized contrast
and brightness scaling, rotations, left-right flips, and different amounts of added Poisson
noise (to mimic varying image acquisition qualities) were applied. During the experiments
regarding the different patch-sizes, as explained in Sec.2.3.1, the used patches were acquired
by adding randomized cropping to the online augmentation scheme. All experiments were
performed using TensorFlow v1.13 (Abadi et al., 2016).

2.2.2 Consistency Filter

In Gottschalk et al. (2021), we could already show the beneficial influence of the Consis-
tency Filter as a post-processing step for the segmentation masks generated by the network.
By exploiting the underlying consistency conditions of 3D reconstructions, the CF enforces
consistency of the segmentation masks among the complete set of segmentation. Addition-
ally, it can robustly remove false-positive segmentation of e.g. anatomical structures. An
overview of the performed steps can be seen in Fig. 3.

Introducing the concept of the CF, we define three mappings Mi : R
2 → {0, 1},

Di : R
2 → {0, 1} and Pi : R

3 → R
2. Whereas Pi links a given 3D voxel (x, y, z) with its
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corresponding 2D pixel (l,m) of the current segmentation mask i,

Mi(l,m) =

{

1, if (l,m) is segmented as metal in mask i

0, else
(1)

describes a function that checks whether a given pixel (l,m) of the current mask i is seg-
mented as metal and

Di(l,m) =

{

1, if (l,m) is inside of mask i

0, else
(2)

describes a function that checks whether the given pixel (l,m) is in general part of the mask
i.
Further we define

VHit(x, y, z) =

N
∑

i=1

Mi (Pi(x, y, z)) (3)

and

VMax(x, y, z) =
N
∑

i=1

Di (Pi(x, y, z)) , (4)

where VHit can be understood as a “hit-counter”, counting how many of the set of 2D
segmentation masks contribute to that specific voxel and VMax expressing how many of
the given segmentation masks can actually contribute. Further, N denotes the number
of segmentation masks, which is in our case 400. Consequently, the normalization VNorm

expressed by

VNorm(x, y, z) =
VHit(x, y, z)

VMax(x, y, z)
(5)

accounts for the decreasing number of possible hits towards the border of the reconstruction.
Assuming that all pixels, mapped by Pi, are part of the current segmentation mask i, the
normalized voxel values VNorm lie in the range of 0 and 1. Whereas voxels with a value
of 0 correspond to no contribution of none of the segmentation masks, voxels with a value
of 1 correspond to a contribution from every segmentation mask. As a consequence, the
voxel values intrinsically hold information about how consistently the respective part of
the metal object was segmented throughout the set of given projections. Thus, applying
a threshold of e.g. 0.96 to binarize the normalized hit-counter volume to a intermediate
3D metal mask, is equivalent to including only those parts into the 3D metal mask, which
were segmented in at least 96% of the projections. Further, it is important to understand
that this intermediate 3D mask only describes an overestimated envelope, because we back-
projected binary 2D masks without any information about the thickness of the metal at
each position. When subsequently applying the final forward-projection to that binarized
3D volume, consequently only consistently segmented metal parts are included in the final
set of 2D segmentation masks. As a result, inconsistencies per se and thus also false-
positive segmentations are excluded and also false-negatives are included up until a certain
degree. Consequently, a clean and simultaneously consistent set of segmentation masks is
provided. An example of the CF’s beneficial influence on the segmentation result can be
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seen in Fig. 4. In the shown example, the segmentation network’s output is once binarized
using a threshold that optimizes the segmentation result concerning the Dice metric and
once with a threshold that is optimized for the subsequently applied CF post-processing.
The CF-optimized 2D segmentation shows no false-positives and filled-up false-negatives.
Furthermore, the post-processed masks achieve the higher Dice score, although not being
optimized for that metric. Moreover, the corresponding reconstructions show a higher
amount of streak artifacts in the case of the Dice-optimal segmentation, which are mainly
due to inconsistencies withing the set of segmentation.

Additionally, we want to clarify that the size of the normalized volume is chosen larger
than the initial diagnostic reconstruction. Instead of 5123 voxels with a voxel size of
0.313mm, it consists of 1500x1500x600 voxels with the same voxel size. This is because
all present metal objects of the measure projections should be part of the normalized hit-
counter volume. Thus, also metal objects that lie at the border of the projection image and
hence outside the FoV of the initial reconstruction can still be parts of the final CF-processed
segmentation masks.

2.3 Experimental Setup

2.3.1 Influence of the Patch-Size

To evaluate the influence of different patch-sizes during the training phase as well as during
inference, the described metal segmentation network was trained several times using patches
of the sizes 642 pixels, 1282 pixels, 2562 pixels, and 5122 pixels. Additionally, the network
was trained one more time as an unpatched version, thus receiving the whole projection
image of size 9762 pixels. Other than for the remaining experiments of this paper, the
study regarding the patch-sizes was conducted extracting patches from the data pool as
it is described in Gottschalk et al. (2021). Despite its patch-based training and due to
its fully-convolutional architecture, the proposed network was however applied with an
unpatched inference strategy, thus receiving the complete projection image as input. Since
the network’s outputs are not yet binary segmentation masks, the outputs are binarized
using a threshold, which was heuristically chosen to 0.

2.3.2 Influence of Proposed Method on the fsMAR performance

In the interest of evaluating the influence of replacing the 3D volume-based threshold-
ing mechanism of the standard fsMAR with the proposed 2D-projection-based data-driven
metal segmentation, coupled with the CF, an evaluation on the 2D segmentation result
itself does not suffice. This is because such an evaluation cannot give insights into the
final MAR’s performance. The influence of the proposed approach has to be evaluated
on the final MAR’s reconstructed volumes themselves. For this purpose, a five-fold cross-
validation was performed, creating four different reconstructions for each test dataset within
each of the folds. These reconstructions are shown in Fig. 8 and Fig. 9 and are denoted
the following: The metal-free and thus artifact-free GT volume is denoted as Label. It
was generated by reconstructing the acquired metal-free projection images coupled with a
subsequently performed metal injection based on the fsMAR’s 3D mask. The unprocessed
reference volume which contains metal artifacts due to being reconstructed using the ac-
quired metal-corrupted projection images is denoted as NoMAR. The MAR volume that
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Input Dice optimal Dice Reco

CF RecoCF optimal + CFLabel

Dice Score: 0.933

Dice Score: 0.946

Figure 4: Resulting segmentation masks for a given Input projection. Whereas Label shows
the GT segmentation, Dice optimal shows the network’s binarized segmantation
using a dice-optimal threshold, CF optimal + CF shows the segmentation result
after applying the Consitency Filter with an input segmentation using a CF-
optimal threshold for binarization. Further, Dice Reco and CF Reco show the
corresponding reconstructions. It can be seen, that in the case of the Dice-
optimal reconstruction (thus not applying the CF post-processing), the lack of
consistency and the false-positive segmentation lead to heavier streak artifacts.
Additionally, the segmentation mask after applying the CF using a CF-optimal
threshold achieves the higher Dice score.

was reconstructed using the standard fsMAR method is denoted as fsMAR and the mod-
ified fsMAR volume, which used the standard fsMAR steps except that our data-driven
metal segmentation mechanism is applied, is denoted as Ours. In the scope of this paper,
the evaluation was limited to the results achieved using the outputs of the network trained
with the patch-size of 2562 coupled with the unpatched inference and the proposed CF as
post-processing. Whereas the threshold of binarizing the network’s output was chosen to
0, the threshold for the amount of demanded consistency enforced by the CF, was chosen
to 96% based on experiments as described in Section 2.3.3.

To quantify the influence of the different segmentation mechanisms (standard fsMAR vs.
modified fsMAR), the reduction of metal artifacts in the corresponding reconstructions was
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evaluated. This was done by calculating the Structural Similarity Index Measure (SSIM)
(Zhou Wang et al., 2004) as well as the Peak Signal to Noise Ratio (PSNR) between the
Label reconstruction and the different MAR methods reconstructions. Since the methods
were evaluated using the acquired cadaver datasets, no 3D ground truth metal segmenta-
tion masks exist. This is because the 2D label segmentations, that are generated by the
difference between the metal-free and metal-corrupted 2D projections, can only provide an
overestimated envelope of the metal mask in 3D as already explained in Sec. 2.2.2. Con-
sequently, there is no possibility to create a real label reconstruction that is free of metal
artifacts and at the same time comprises the correct undisturbed metal information. This
is only possible when creating the test datasets by simulation. To still provide a meaningful
evaluation with our cadaver data, only non-metal regions of the reconstructed slices are
considered for the calculation of the metrics. This is sufficient for the evaluation because
the metal artifacts spread across the whole size of the reconstructed slices. Additionally,
anatomical structures adjacent to the metal implants are influenced differently by the com-
pared approaches. To neither favor one of the two methods in the evaluation, a joint 3D
segmentation mask of both methods is used for masking the metrics. This means, that all
reconstructed regions that are included in that joint mask are set to 0 in all reconstructions,
thus not contributing to the different metrics results. This joint mask MJoint is calculated
as follows:

MJoint = MfsMAR ∨Mmod.fsMAR, (6)

whereMfsMAR denotes the binary 3D mask generated by the standard fsMAR andMmod.fsMAR

the binarized intermediate 3D mask of the modified fsMAR (cf. Fig. 3). To make sure that
all metal implants are safely included in that joint mask, the proposed segmentation ap-
proach is parametrized (solely for creating that joint mask; that parameter set is not applied
during inference of the test datasets) that it creates slightly overestimated masks. There-
fore the network’s output threshold is set to −5 and the CF’s threshold for the amount of
necessary consistency is decreased to 95%. Thus, an overall slightly grown joint mask is
achieved. Two examples of the different MAR’s masks, as well as their joint mask, can be
seen in Fig. 5. Examples of excluded regions masked by the joint mask can e.g. be seen in
Fig. 8 where they are denoted with red outlines.

Apart from quantitatively evaluating the influence on the test datasets, the influence
was also qualitatively evaluated on two clinical datasets to investigate the generalization
abilities of the approach. The mentioned data was acquired by the BG Trauma Centre
Ludwigshafen, Germany during real clinical interventions.

2.3.3 Influence of the Consistency Filter Threshold

To investigate the influence of the threshold that enforces different degrees of consistency
within the CF, as explained in Section 2.2.2, experiments are performed with the first of
the five data folds. We therefore examine the changes for different CF thresholds (0.8, 0.85,
0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 0.992, 0.994, 0.996, 0.998) directly on the corresponding
CF-processed 2D segmentation masks. This is done by calculating the precision, recall,
and F-Score. Further, the influence on the image quality of the corresponding downstream
MAR reconstructions is measured by the SSIM. Based on the mentioned reasons in Section
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a) Reco Slice fsMAR mask Our mask Composite mask

c) Reco Slice fsMAR mask Our mask Composite mask

fsMAR mask Our mask Composite mask

fsMAR mask Our mask Composite mask

b) Projection

d) Projection

Figure 5: The 1st column shows two examples, each shown as a 3D reconstruction slice (cf.
a) and c)) and corresponding 2D projection (cf. b) and d)), where a) and b) cor-
respond to the first example (knee) and c) and d) to the second example (spine).
Whereas the 2nd column shows the threshold-based 3D masks and its correspond-
ing forward-projected 2D mask extracted by the standard fsMAR, the 3rd column
represents the respective proposed modified fsMAR masks. Moreover, the 4th row
shows the composite/joint segmentation mask of both methods, which is used to
mask the quantitative evaluation metrics as explained in Sec. 2.3.2. It can be
seen, that the masks are widely comparable for the first example, whereas the
masks for the second example vary drastically. This is due to the CBCT typical
artifacts and the inability to segment the resulting vanishing metal structures in
a 3D segmentation approach.
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2.3.2 the SSIM is again only calculated in non-metal areas by masking the reconstructions
with the joint metal mask.

3. Experimental Results

3.1 Influence of the Patch-Size

The influence of the different patch-sizes during training and the unpatched inference was
quantitatively evaluated using the receiver operating characteristic curves (RoC) and its
corresponding area under the curve (AUC) values on pixel-level. These metrics are used
because they are independent of the chosen threshold to binarize the network’s output.
The AUC can reach a maximum of 1. The overview about the micro-mean AUCs, where
micro-mean denotes the mean AUC values over all 400 segmentations of one test scan,
can be found in Tab. 1. Additionally, segmentation results of one qualitative example are
presented in Fig. 6.

Investigating the quantitative evaluation in Tab. 1 it becomes apparent that using a
patch-based training of the network leads to higher AUCs than training the network on
the complete projection with a size of 9762. This observation holds for all tested training
patch-sizes with achieving the lowest macro-mean and macro-median AUC values (where
macro denotes the mean over the micro-means of all test scans) of 0.97343 and 0.97861,
respectively, when using the unpatched trained network. Furthermore, it can be observed
that the performance increases with increasing patch-size, reaching a plateau for patch-
sizes 256 and 512, performing rather equivalently well. Whereas training with patch-size
512 reaches the highest macro-mean AUC value of 0.99784, patch-size 256 achieves the
highest macro-median AUC value of 0.99951.

The observed trends can also be investigated in the presented example results qualita-
tively shown in Fig. 6. The worst performance can be observed for the network trained on
the complete projection, causing a high amount of false-positive segmentation and even a
small amount of false-negative segmentation (cf. Fig. 6; upper right corner). In contrast, all
patch-based networks achieve a high amount of true-positive segmentation. However, the
smallest patch-size of 64 generates a significant amount of false-positives. Furthermore, we
see that an increasing patch-size decreases the amount of false-positive segmentation while
keeping the true-positive segmentation rather constant.

3.2 Influence of the Consistency Filter Threshold

The line plots of the CF threshold experiments regarding the precision, recall, and F-score
calculated on the CF-processed 2D segmentation masks themselves and the SSIM of the
corresponding MAR reconstructions are presented in Fig. 7. It becomes apparent that a
rather low consistency requirement of 0.8 leads to low precision, F-Score, and SSIM scores.
In contrast, the recall reaches its maximum. Further, an increasing enforced consistency
causes increasing precision, F-Score, and SSIM, whilst the recall decreases. Between a
threshold of 0.95 and 0.996, a rather moderate increase of the precision and decrease of the
recall can be observed. The F-Score builds a plateau in this range. At the threshold of
0.990 precision and recall and consequently also the F-Score are crossing. The threshold
of 0.998 creates a slightly higher decrease in recall and F-Score. Focusing on the SSIM
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Table 1: Overview about the micro-mean AUC values for the different trained patch-sizes.
Each line of the table represents the micro-mean AUC values over all 400 projection
images of one test scan (TS). The last two rows show the macro-mean and macro-
median AUC values over all TS, respectively. The best overall results, as well as
the best results for each specific TS, are represented in bold type.

Patch-Size

Test Set 64 128 256 512 unpatched

TS1 0.99787 0.99922 0.99928 0.99926 0.99337
TS2 0.98798 0.99982 0.99987 0.99985 0.99522
TS3 0.97892 0.98248 0.98174 0.98617 0.97369
TS4 0.99529 0.99985 0.99986 0.99966 0.99532
TS5 0.98515 0.99962 0.99975 0.99952 0.98715
TS6 0.98806 0.99952 0.99972 0.99945 0.99456
TS7 0.99541 0.99856 0.99896 0.99926 0.97861
TS8 0.98677 0.99301 0.99381 0.99425 0.95824
TS9 0.98766 0.99962 0.99970 0.99972 0.98187
TS10 0.99326 0.99936 0.99951 0.99948 0.97156
TS11 0.99437 0.99955 0.99967 0.99964 0.96814
TS12 0.98522 0.99757 0.99771 0.99781 0.96592
TS13 0.99173 0.99827 0.99864 0.99787 0.89096

Mean 0.98982 0.99742 0.99756 0.99784 0.97343
Median 0.98806 0.99936 0.99951 0.99945 0.97861

and thus on the image quality of the corresponding reconstructions reveals a peak SSIM
score of 0.9982 at a threshold of 0.96 with a subsequent decrease when applying increasing
thresholds. Equivalent to the observed effects on the recall and F-Score a more significant
drop-off of image quality can be seen for threshold 0.998.

3.3 Influence of Proposed Method on the fsMAR Performance

Since the proposed projection-based segmentation method is only one step of an inpainting-
based MAR method, and an evaluation on the segmentation itself cannot give insights into
the final MAR’s performance, the influence of the proposed approach has to be evaluated on
the reconstructed volumes. In the scope of this paper, this is done using the network that is
trained with the patch-size of 256, coupled with an unpatched inference and the proposed
CF as post-processing. This configuration was chosen over the equivalently performing
network with patch-size 512 since it reaches the highest micro-mean AUCs in the maximal
amount of test sets (denoted in bold type in Tab. 1). Further, the CF threshold was set
to 0.96 according to the performed experiments. Using this set of parameters, the network
was trained and tested five times using the different data folds.
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PS: 64 PS: 128 PS: 256 PS: 512 PS: 976 (unpatched)a)

b)

Figure 6: The image shows the segmentation results of the different segmentation strategies.
a) shows the network’s results being trained with increasing patch-sizes (PS) from
left to right. The respective patch-sizes are additionally illustrated as red squares
with there actual sizes. b) shows the respective composite images, which overlay
the corresponding segmentation result with the network’s input projection.

Table 2: Mean SSIM and PSNR values over all folds of the cross-validation. The last row
presents the mean metrics’ values over all folds. The best result for each fold and
the best overall are shown in bold type.

SSIM PSNR

Fold NoMAR fsMAR Ours NoMAR fsMAR Ours

1 0.9939 0.9973 0.9981 60.06 62.40 63.12

2 0.9954 0.9976 0.9978 61.41 63.20 63.38

3 0.9950 0.9969 0.9980 61.07 62.54 63.15

4 0.9938 0.9965 0.9979 60.67 62.40 63.08

5 0.9957 0.9977 0.9983 61.26 62.97 63.43

Ø 0.9948 0.9972 0.9981 60.90 62.70 63.23

Before focusing on more detailed results for the first data fold, Tab. 2 shows the overview
about the mean SSIM and PSNR scores over all folds. It can be investigated that the
modified segmentation method slightly elevates the MAR performance leading to slightly
increased overall SSIM and PSNR scores for all folds of the validation. The mean SSIM
and PSNR score of the modified fsMAR lies 0.9e−3 and 0.5 dB, respectively, above those
of the standard fsMAR. Furthermore, both, the resulting SSIM and PSNR scores for the
standard fsMAR as well as modified fsMAR, only vary marginally over the different folds.
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Figure 7: Overview about the SSIM and F-score, precision and recall scores for the different
Consistency Filter thresholds.

The maximum deviation of the SSIM of the standard fsMAR and modified fsMAR between
the folds lie at 1.2e−3 and 0.5e−3, respectively. For the PSNR scores at 0.8 and 0.3 dB.

Investigating the results in more detail for the first fold of the cross-validation, the
quantitative comparison between the standard fsMAR and the proposed modified fsMAR
can be found in Tab. 3. It becomes apparent that the switch to the proposed segmentation
approach increases the quality of the MAR’s results, reaching a fold-mean SSIM score of
0.9981 and a fold-mean PSNR value of 63.177 dB. Thus, the modified fsMAR surpasses
the results of both, the unprocessed reconstruction, as well as the standard fsMAR in all
11 test scans. The highest difference over all slices shows for test scan 7 with an increase
of 1.74 dB concerning the PSNR. Moreover, the maximal difference between the slices of
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Table 3: Intra-fold Mean SSIM and PSNR values over all metal-containing slices of the
masked volumes of the test scans (TS) contained in the first fold of the cross-
validation. Furthermore, the maximal difference (Max Diff.) between correspond-
ing slices of the standard fsMAR and modified FsMAR is shown. Whereas positive
differences are in favor of the modified fsMAR, negative differences are in favor of
the standard fsMAR. The last row presents the macro-mean metrics’ values over
all TS of the fold. The best result for each TS and the best overall (fold-mean)
are shown in bold type.

SSIM PSNR

TS NoMAR fsMAR Ours Max Diff. NoMAR fsMAR Ours Max Diff.

1 0.9958 0.9984 0.9986 0.0060 62.15 63.73 63.81 3.004
2 0.9935 0.9974 0.9983 0.0294 59.26 62.24 63.11 8.649
3 0.9957 0.9978 0.9981 0.0067 58.54 60.35 60.51 3.965
4 0.9955 0.9969 0.9971 0.0028 59.86 61.45 61.64 1.327
5 0.9944 0.9976 0.9980 0.0035 60.42 62.81 63.27 2.517
6 0.9910 0.9943 0.9971 0.0280 59.41 60.94 62.38 8.667
7 0.9945 0.9984 0.9994 0.0076 60.71 64.12 65.86 9.028
8 0.9953 0.9982 0.9985 0.0099 61.81 63.45 63.56 3.857
9 0.9943 0.9974 0.9980 0.0146 60.53 62.39 62.73 5.002
10 0.9932 0.9974 0.9982 0.0081 59.18 62.49 63.39 6.724
11 0.9894 0.9961 0.9981 0.0134 58.78 62.41 64.03 6.822

Ø 0.9939 0.9973 0.9981 0.0118 60.06 62.40 63.12 5.415

the standard fsMAR and the modified fsMAR show more significant results. With a mean
maximal difference of 0.0118 and 5.415 dB w.r.t. SSIM and PSNR respectively, the modified
fsMAR clearly outperforms the standard fsMAR in certain slices. Further evaluations on
other folds of the cross-validation show that increases regarding the mean over all slices
with up to roughly 3 dB can be reached for more complex cases. These cases comprise a
higher amount and more challenging metal configurations. Such an example is illustrated
in Fig. 10.

By examining the qualitative results and the corresponding SSIM line plots presented
in Fig. 8 illustrating the results for test scans 1 to 5 and Fig. 9 illustrating the results for
test scans 6 to 11 of the first fold, similar effects can be observed. It becomes apparent that
for the majority of test cases the standard fsMAR, as well as the modified fsMAR, perform
equally well, with a slight beneficial tendency for the proposed approach. The differences are
that marginal, that they do not visually show up in the corresponding presented slices (cf.
Fig. 8 & Fig. 9). This especially holds for scans comprising knees. However, investigating
the qualitative results for test scans 2, 3 (Fig. 8), 6, 8, 9 (Fig. 9) and the example in Fig. 10,
significant differences can be observed. In Fig. 8 at test scan 3 comprising a spine, it can
be seen that the standard fsMAR is not able to segment the complete inserted pedicle
screws, but only the associated heads. Due to that, only artifacts originating from the
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Figure 8: Overview about the per-slice SSIM scores and one slice (marked as a gray dotted
line) of each of the corresponding reconstructions for the first 5 TS of the first
fold. Each row comprises the quantitative (left) and qualitative (right) results of
one test scan. The 1st column of the qualitative results shows the label recon-
structions, the 2nd column shows the reconstructions without the use of a MAR
method (NoMAR), the 3rd column shows the reconstruction using the standard
fsMAR method and the 4th column shows the corresponding reconstruction of
using our proposed segmentation method for the modified fsMAR (Ours). The
red outlines represent the envelope of the joint segmentation masks which are
used to mask the metrics’ scores. All regions inside the denoted envelope are set
to 0 during the metric calculations. All shown reconstructions are windowed with
[500, 2048] HU.
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Figure 9: Overview about the per-slice SSIM scores and one slice (marked as a gray dotted
line) of each of the corresponding reconstructions for the last 6 TS of the first
fold. The layout and annotations are equivalent to those of Fig. 8.
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fsMAR

LabelNoMAR

Ours

Figure 10: Reconstruction results for TS 8 of fold 4, which comprises a high amount of
metal objects. Additional to pedicle screws, this dataset also includes towers,
which are used during minimal invasive spine surgery. Whereas the standard
fsMAR can only slightly reduce the artifacts due to a failed segmentation mask,
the modified fsMAR achieves a significant artifact reduction.

screws’ heads are reduced, whereas present beam hardening artifacts at the tips of the
screws remain unchanged. In opposition to that, the proposed approach shows reduced
artifacts throughout the complete size of the screws. Similar effects can be observed for
test scans 8 and 9 in Fig. 9 where the segmentation of the standard fsMAR misses parts
of the screws. For test scan 2 (Fig. 8) it becomes apparent that the streak artifacts, which
originate from parts of K-wires, which lie outside the FoV of the reconstruction, are reduced
more efficiently using the proposed segmentation approach. The represented slice for test
scan 6 (Fig. 9) shows a similar case in which metal reaches from outside the FoV into the
reconstruction. Whereas the standard fsMAR is able to fully segment the present metal
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a)

b)

NoMAR fsMAR Ours

NoMAR fsMAR Ours

Figure 11: Comparison of qualitative results for two clinical datasets. Row a) shows the
MAR’s reconstructions for a clinical knee dataset and row b) for a clinical spine
dataset.

plate and only an insufficient part of the metal lying outside and at the border of the volume,
the modified fsMAR segments all present metal parts, thus achieving a more artifact reduced
reconstruction. For both cases, a significant performance difference can also be seen in the
corresponding line plots. However, similar to the quantitative results, the most significant
difference between the two approaches can be seen for the presented test scan in Fig. 10.
While for the shown slice, the standard fsMAR is not able to reduce any of the artifacts
due to a failed segmentation, our approach nearly completely removes the present artifacts.
Furthermore, the superior performance is not only reached in the single presented slice but
rather holds for the complete set of slices.

When additionally examining the qualitative results for two clinical datasets, the same
effects can be observed (cf. Fig. 11). Vanishing intensities in the metal objects lead to an
under-segmentation of the implants by the standard fsMAR, thus reaching only a minor
reduction of artifacts. The proposed approach however can segment the corresponding
metal implants in 2D, thus reaching a significantly higher reduction of artifacts in both
shown cases.
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4. Discussion

The presented results show that in cases that contain slices that comprise a severe arti-
facts e.g. originating from metal outside the FoV or vanishing metal intensities due to
scatter and photon starvation, the shift of the segmentation to the 2D projection-domain
coupled with the proposed CF is beneficial. Since the metal-containing slices commonly
comprise the crucial information for an intraoperative evaluation of fracture reduction and
correct implant positioning, the modified segmentation approach holds great potential for
orthopedic/trauma interventions.

To discuss the results in more detail, we start by assessing the quantitative and qual-
itative results of training the network with different patch-sizes in combination with an
unpatched inference strategy. It becomes apparent that patch-based training is beneficial
for the segmentation task. This is probably due to the higher amounts of variation in the
training dataset, caused by a higher amount of augmentation. Furthermore, the results
reveal that the unpatched inference strategy achieves satisfying results, although the net-
works were trained patch-based. Performing an unpatched inference additionally holds the
benefit of an increased inference speed compared to a patch-based approach using a sliding
window with overlapping patches. Since the training data for the segmentation was mainly
acquired for human knees and spine in orthopedic/trauma intervention setups, we do not
necessarily expect the method to generalize to all conceivable metal objects like e.g. coils
or stents. We assume that the method requires retraining or refinement for those objects.

The shown results of the experiments regarding the CF threshold give interesting insights
into the behavior of the CF. The low threshold of 0.8 results in a majorly overestimated in-
termediate 3D mask, thus comprising almost all true-positives (TP) but also a high amount
of false-positives (FP). Whereas the high TPs explain the high recall, the high FPs result
in a significant drop-off of the precision. The mentioned overestimation is due to includ-
ing streak artifacts, which themselves originate from inconsistencies within the network’s
predicted masks, into the intermediate 3D mask. This happens when requiring a too low
amount of consistency for the final segmentation masks. Despite the mentioned overesti-
mation of the masks and the clear drop-off of the precision, the corresponding SSIM score
is relatively high. This is because the broad masks lead to a rather large inpainting region,
resulting in an almost artifact-free, but also smoothed reconstruction. However, in the con-
text of surgical interventions, this is critical, because that smoothing could lead to blurring
or even to the disappearance of important adjacent anatomical structures to the implant.
Consequently, it is important to find a trade-off between removing the artifacts requiring
a big enough mask to include all TPs, and retaining all important adjacent structures.
This however requires a mask as small as possible to keep the amount of FPs low. The
significant increase of the precision between 0.8 and 0.95 is due to excluding the majority of
artifacts from the intermediate 3D mask resulting in a shrinking of the mask. Furthermore,
this comes only with a small loss of TPs, as can be seen by the rather stable recall and
the increasing F-Score. The plateauing F-Score for the thresholds in the interval 0.95 to
0.996 further suggests a balanced increase and decrease of the TP and FP, respectively.
The SSIM however shows a decrease starting with a threshold 0.99 after almost plateauing
between 0.95 and 0.98. The shrinking mask leads to losing TPs, thus leaving metal regions
unprocessed by the downstream MAR, ending up with still present metal artifacts in the
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reconstruction. This behavior leads to a decreased SSIM and aggravates with increasing
thresholds. Concluding the mentioned effects and the combination of the presented F-Score
and SSIM suggests picking a CF threshold between 0.95 and 0.98 to fully leverage the ben-
efits of the proposed CF. Due to the highest reached SSIM score at 0.96, this threshold is
conducted for the performed cross-validation.

When evaluating the results of the influence of shifting the segmentation task to 2D, the
only slightly varying results over the different folds of the cross-validation show that there
is no selection bias or overfitting. Since the presented mean scores of the cross-validation
comprise averaging over all metal-containing slices of each single test scan, and additionally
over all test scans of a fold, the results are somewhat diluted. In the majority of slices,
neither effects like photon starvation nor metal reaching outside the FoV are present. Con-
sequently, the standard fsMAR’s threshold-based 3D segmentation works properly, hence,
reaching similar metric scores as the modified fsMAR.

However, focusing on the detailed results of the first fold, we see several interesting
effects. As explained, for simple cases in which the metal objects neither lie outside the
FoV nor cause vanishing intensities inside the very same, the standard fsMAR, and the
modified fsMAR show nearly equal quantitative results. The evaluation suggests only a
slight advantage towards our proposed method. This is e.g. the case for test sets 1, 4,
5, 7, and 10. The corresponding qualitative results support that investigation showing no
significant visual differences. However, for cases that comprise either metal outside the
FoV or metal parts that suffer from a vanished representation in 3D (cf. test scans 2, 3,
6, 8, 9 and 11), clear advantages can be investigated applying the proposed 2D projection-
based segmentation. The standard fsMAR’s segmentation is unable to segment such metal
parts, thus leaving those unprocessed in the downstream inpainting step. This leads to
still clearly visible artifacts. In contrast, the results suggest that the modified segmentation
still provides complete masks, thus enabling the downstream processing to be applied to
all present metals. This yields a significantly higher amount of reduced artifacts. The very
same impact appears even more prominent in the test scan presented in Fig. 10 for TS 8
of fold 4, which comprises both effects – metal outside the FoV and vanishing metal parts
due to e.g. photon starvation. The same holds for the shown results for clinical data.

When exclusively looking at the inter-fold (Tab. 2) and fold (Tab. 3) mean scores, it
gives the impression that shifting the segmentation only marginally improves the results.
However, during surgical interventions, not the overall image quality of a certain 3D scan
(expressed by mean over all slices) is the main focus, but rather the quality of single slices
that are crucial for the correct evaluation of e.g. the positioning of an implant. An undiluted
difference of the both methods in such slices is better expressed by the presented maximal
difference in Tab. 3. Therefore, the mean maximal difference of 5.415 dB reveals a clear
advantage of the modified fsMAR in those slices and consequently a potential benefit for
surgical applications.

Another interesting insight is revealed by the qualitative results for test sets with photon
starvation effects (cf. e.g. Fig. 8, TS 3) reveal an interesting insight. As shown in Fig. 1,
the inpainting step of the MAR uses a 2D metal mask, whereas the metal insertion step
still requires a 3D metal mask. Thus, in the case of the standard fsMAR, these masks
“match” because the 2D mask was acquired by forward-projection of the respective 3D
mask. However, when applying our modified fsMAR, which uses our data-driven segmented
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2D masks for the downstream inpainting while retaining the original fsMAR’s 3D mask for
the metal insertion, discrepancies between the masks occur. This has the effect of seemingly
disappearing metal implants in cases of e.g. vanishing metal intensities, e.g. due to photon
starvation. The more accurate 2D masks of our approach lead to regions being inpainted
that are subsequently not being inserted back into the volume, due to being missed in the
original 3D mask. Thus, further improvements need to include a new 3D segmentation
approach or a mechanism that provides a consistent joint mask.

Since the proposed segmentation network, coupled with the CF was trained using real
data from cadaver studies, we are convinced that the shown results generalize well to real
clinical cases of surgical interventions. This assumption is further supported by the qualita-
tive results shown for the two tested clinical cases, which reveal an increased MAR perfor-
mance, using our proposed method (cf. Fig. 11). Moreover, the majority of the more recent
learning-based MAR method relies on a 3D volume-based segmentation, thus suffering from
the same inability to cope with those mentioned effects. Consequently, we believe that the
proposed method can equally boost their performances for cases of e.g. metal outside the
FoV. However, this should be proven with further experiments.

5. Conclusion

In this paper, we investigated the influence of shifting the segmentation task from a 3D
volume-based thresholding to a data-driven, view-consistent, and 2D projection-wise ap-
proach for the MAR’s downstream inpainting task. While the projection-wise segmentation
is performed by a network trained on real cadaver data, the view-consistency of the seg-
mentation is ensured by a subsequent CF. Experiments regarding the patch-size suggest
coupling a patch-based training with an unpatched inference of the segmentation network.
Experiments w.r.t. the proposed segmentation method’s influence on the downstream MAR
task, reveal that the proposed approach has a strongly beneficial influence on the amount
of reduced artifacts in crucial slices – especially in cases that comprise metal objects outside
the FoV, or an vanished representation of the very same. Further, the shifted segmentation
is intrinsically invulnerable to the metal-artifacts themselves. However, the inconsistency
between the proposed 2D mask for the inpainting task and the 3D mask for the metal in-
jection leads to disappearing metal implants and thus insufficient image quality. Since the
proposed method was trained on cadaver data with (at least partly) clinical-like realism,
the method is expected to generalize well for real surgical interventions. This assumption is
supported by the qualitative results shown for the two clinical cases. Furthermore, we are
convinced that the shown improvements are reproducible with all MAR methods currently
relying on a 3D thresholding-based metal segmentation coupled with a subsequent 2D-based
inpainting step.

Summarizing the conducted experiments shows that the proposed shift of the segmenta-
tion to a view-consistent 2D projection-domain-based approach achieves equivalent results
to a 3D volume-based thresholding when being applied to cases with moderate amounts of
artifacts. However, being applied to cases comprising severe artifacts that lead to vanishing
metal intensities, the proposed shift holds significant benefits.
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