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Abstract

Despite impressive state-of-the-art performance on a wide variety of machine learning
tasks in multiple applications, deep learning methods can produce over-confident predic-
tions, particularly with limited training data. Therefore, quantifying uncertainty is par-
ticularly important in critical applications such as lesion detection and clinical diagnosis,
where a realistic assessment of uncertainty is essential in determining surgical margins,
disease status and appropriate treatment. In this work, we propose a novel approach that
uses quantile regression for quantifying aleatoric uncertainty in both supervised and unsu-
pervised lesion detection problems. The resulting confidence intervals can be used for lesion
detection and segmentation. In the unsupervised setting, we combine quantile regression
with the Variational AutoEncoder (VAE). The VAE is trained on lesion-free data, so when
presented with an image with a lesion, it tends to reconstruct a lesion-free version of the
image. To detect the lesion, we then compare the input (lesion) and output (lesion-free)
images. Here we address the problem of quantifying uncertainty in the images that are
reconstructed by the VAE as the basis for principled outlier or lesion detection. The VAE
models the output as a conditionally independent Gaussian characterized by its mean and
variance. Unfortunately, joint optimization of both mean and variance in the VAE leads
to the well-known problem of shrinkage or underestimation of variance. Here we describe
an alternative Quantile-Regression VAE (QR-VAE) that avoids this variance shrinkage
problem by directly estimating conditional quantiles for the input image. Using the esti-
mated quantiles, we compute the conditional mean and variance for the input image from
which we then detect outliers by thresholding at a false-discovery-rate corrected p-value.
In the supervised setting, we develop binary quantile regression (BQR) for the supervised
lesion segmentation task. We show how BQR can be used to capture uncertainty in lesion
boundaries in a manner that characterizes expert disagreement.

1. Introduction

Inference based on deep learning methods that do not take uncertainty into account can lead
to over-confident predictions, particularly with limited training data (Reinhold et al., 2020).
Quantifying uncertainty is particularly important in critical applications such as clinical
diagnosis, where a realistic assessment of uncertainty is important in determining disease
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status and appropriate treatment. For example, in the lesion detection task, knowing the
uncertainty in detected boundaries may help in defining tumor margins. In the literature,
predictive uncertainty is categorized into two types based on the source of uncertainty:
(i) aleatoric uncertainty (Lakshminarayanan et al., 2016) that is the result of uncertainty
inherent in the data, and (ii) epistemic uncertainty, which is often referred to as model
uncertainty, as it is due to model limitations. Access to unlimited training data does
not reduce the former uncertainty in contrast to the latter. Here we focus on aleatoric
uncertainty and its estimation using quantile regression (QR) (Koenker and Bassett Jr,
1978).

A recent novel approach proposed using conditional QR to estimate aleatoric uncertainty
in neural networks (Romano et al., 2019; Tagasovska and Lopez-Paz, 2019). QR can be
used to estimate the conditional median (0.5 quantiles) or other quantiles of the response
variable, conditioned on the input feature variable (Yu and Moyeed, 2001). QR is most
commonly applied in cases where the parametric likelihood cannot be specified (Yu and
Moyeed, 2001), here we apply develop QR methods for Gaussian (supervised) and binary
(unsupervised) applications.

Lesion detection is an important application of deep learning in medical image process-
ing. Here we address the important problem of learning uncertainty in order to perform
statistically-informed inference for this application. Lesion detection can be applied either
in a supervised framework when labels are available or with an unsupervised framework
using a generative model such as the VAE. We describe how aleatoric uncertainty can be
quantified in both of these settings using quantile regression to define confidence intervals,
which are then used to identify lesions. In both supervised and unsupervised frameworks,
we apply quantile regression by changing the loss function of the network. For quantile
regression in the unsupervised setting, we use the formulation developed by He (1997). Our
goal is to learn the characteristics of the input distribution to separate inliers from outliers.
The quantiles help us to define confidence intervals from which we can identify outliers.
For the supervised setting we use binary quantile regression (Koenker and Hallock, 2001)
in order to capture uncertainty in binary classification problems. In both scenarios, our
goal is to estimate aleatoric uncertainty in segmentation and calculate a confidence interval
associated with each segmentation.

Unsupervised Lesion Detection: Generative models, including autoencoders, can
be used for unsupervised lesion detection. Once the distribution of anomaly-free samples
is learned during the training, during inference we can compute the reconstruction error
between a given image and its reconstruction to identify abnormalities (Aggarwal, 2015;
Akrami et al., 2021, 2020, 2019). Decisions on the presence of outliers are often per-
formed based on empirically chosen thresholds. Here we use quantile regression to define a
principled-approach to thresholding.

Variational autoencoder (VAE) (Kingma and Welling, 2013) and its variants can ap-
proximate the underlying distribution of high-dimensional data. VAEs are trained using
the variational lower bound of the marginal likelihood of data as the objective function.
They can then be used to generate samples from the data distribution, where probabilities
at the output are modeled as parametric distributions such as Gaussian or Bernoulli that
are conditionally independent across output dimensions (Kingma and Welling, 2013). By
using VAE, An and Cho (2015) proposed to use reconstruction probability rather than the
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reconstruction error to detect outliers. This allows a more principled approach to anomaly
detection since inference is based on quantitative statistical measures and can include cor-
rections for multiple comparisons.

For determining the reconstruction probability, we need to predict both conditional
mean and variance using VAEs for each of the output dimensions. The estimated variance
represents an aleatoric uncertainty associated with the conditional estimates given the data
(Reinhold et al., 2020). Estimating variance is more challenging than estimating the mean
in generative networks due to the unbounded likelihood (Skafte et al., 2019). In the case
of VAEs, if the conditional mean network prediction is nearly perfect (zero reconstruction
error), then maximizing the log-likelihood pushes the estimated variance towards zero in or-
der to maximize the likelihood. This also makes VAEs susceptible to overfitting the training
data giving a near-perfect reconstruction on the training data and very small uncertainty.
This near-zero variance does not reflect the true performance of the VAE on the test data.
For this reason, near-zero variance estimates, with the log-likelihood approaching an infi-
nite supremum, do not lead to a good generative model. It has been shown that there is
a strong link between this likelihood blow-up and the mode-collapse phenomenon (Mattei
and Frellsen, 2018; Reinhold et al., 2020). In fact, in this case, the VAE behaves much like
a deterministic autoencoder (Blaauw and Bonada, 2016).

While the classical formulation of VAEs allows both mean and variance estimates
(Kingma and Welling, 2013), because of the variance shrinkage problem, most if not all
implementations of VAE, including the standard implementations in PyTorch and Tensor-
flow libraries, estimate only the mean with a fixed value of variance (Skafte et al., 2019).
Here we describe an approach that overcomes the variance shrinkage problem in VAEs using
quantile regression (QR) in place of variance estimation. We then demonstrate the appli-
cation of this new QR-VAE by computing reconstruction probabilities for a brain lesion
detection task.

Supervised Lesion Detection: Labelled training data are preferable, if available, as
they lead to better performance compared to unsupervised models (You et al., 2019). One
approach to estimating uncertainty is to use the soft-max probability of the cross-entropy
loss (DeVries and Taylor, 2018). Softmax probabilities are known to be poorly calibrated,
and imperceptible perturbations to the input image can change the deep network’s soft-
max output significantly (Guo et al., 2017). Softmax confidence also conflates two different
sources of uncertainty (aleatoric and epistemic). Bayesian neural networks (Neal, 2012)
can be used for estimating aleatoric uncertainty by measuring conditional entropy; how-
ever, these models are not able to capture multimodal uncertainty profiles (Tagasovska and
Lopez-Paz, 2019). An alternative method to capture aleatoric uncertainty is using quan-
tile regression (Tagasovska and Lopez-Paz, 2018). Here we used binary quantile regression
(Kordas, 2006; Manski, 1985) to capture the quantiles of labels which can be used to define
multiple nested segmentation masks with increasing uncertainty. Our goal is to capture the
source of uncertainty within the data distribution where there is more than one plausible an-
swer to the segmentation problem due to disagreement between the specialists who labeled
the data. Binary quantile regression is also robust to label noise (Oh et al., 2016). Finally,
Kordas et al. (2006) showed that binary quantile regression can be useful for unbalanced
data and leads to a more comprehensive view on how the predictor variables influence the
response.
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Related Work: A few recent papers have targeted the variance shrinkage problem.
Among these, Detlefsen et al. (2019) describe reliable estimation of the variance using
Comb-VAE, a locally aware mini-batching framework that includes a scheme for unbiased
weight updates for the variance network. In an alternative approach Stirn and Knowles 2020,
(Stirn and Knowles, 2020) suggest treating variance variationally, assuming a Student’s t-
likelihood for the posterior to prevent optimization instabilities and a Gamma prior for the
precision parameter of this distribution. The resulting Kullback–Leibler (KL) divergence
induces gradients that prevent the variance from approaching zero (Stirn and Knowles,
2020).

In the supervised framework, several papers estimate uncertainty for segmentation; how-
ever, only a few separately consider aleatoric uncertainty and focus on multi-rated labels
(Czolbe et al., 2021; Hu et al., 2019; Islam and Glocker, 2021; Kohl et al., 2018). Czolbe
et al. (2021) compared these methods to investigate whether they are helpful in an assess-
ment of segmentation quality and active learning. Recently, Monteiro et al. (2020) used
a stochastic segmentation network for modeling spatially correlated uncertainty in image
segmentation. They applied a multivariate Normal distribution over the softmax logits and
used low-rank approximation to estimate the full covariance matrix across all the pixels in
the image (Monteiro et al., 2020).

Our Contribution: In the unsupervised setting, to obtain a probabilistic threshold
and address the variance shrinkage problem, we suggest an alternative and attractively sim-
ple solution. Assuming the output of the VAE has a Gaussian distribution, we quantify
uncertainty in VAE estimates using conditional quantile regression (QR-VAE). The aim of
conditional quantile regression (Koenker and Bassett Jr, 1978) is to estimate a quantile of
interest. Here we use these quantiles to compute variance, thus sidestepping the shrinkage
problem. It has been shown that quantile regression is able to capture aleatoric uncer-
tainty (Tagasovska and Lopez-Paz, 2019). We demonstrate the effectiveness of our method
quantitatively and qualitatively on simulated and brain MRI datasets. Our approach is
computationally efficient and does not add any complications to training or sampling pro-
cedures. In contrast to the VAE loss function, the QR-VAE loss function does not have
an interaction term between quantiles, and therefore, shrinkage does not happen. Since
quantile regression does not satisfy finite-sample coverage guarantees, we applied confor-
malized quantile regression (Romano et al., 2019), which combines conformal prediction
with classical quantile regression, to have the theoretical guarantee of valid coverage.

We also use binary quantile regression in a supervised framework in order to capture
the uncertainty of lesion annotations. We demonstrate estimation of multiple quantiles in
imaging data in which each lesion is delineated by four human observers and compare to
human-rater ground truth and a binary cross-entropy formulation.

A preliminary version of these results was presented in Akrami et al. (2021). The
novel extensions presented in the current work include: (1) application of conformalized
quantile regression to unsupervised learning (section 3.1); (2) extension of unsupervised
approach to the supervised approach using binary quantile regression (section 3.2), (3)
application of binary quantile regression for lesion detection and uncertainty estimation,
(section 4.3), and (4) additional results and validation that extend those in the earlier paper.
We provide a public version of our code at https://github.com/ajoshiusc/QRSegment

and https://github.com/ajoshiusc/QRVAE.
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2. Background

2.1 Variance Shrinkage Problem in Variational Autoencoders

Let xi ∈ R
D be an observed sample of random variable X where i ∈ {1, · · · , N}, D is the

number of features and N is the number of samples; and let zi be an observed sample for
latent variable Z. Given a sample xi representing the input data, the VAE is a probabilistic
graphical model that estimates the posterior distribution pθ(Z|X) as well as the model
evidence pθ(X), where ¹ are the generative model parameters (Kingma and Welling, 2013).
The VAE approximates the posterior distribution of Z given X by a tractable parametric
distribution and minimizes the ELBO (evidence lower bound) loss (An and Cho, 2015).
It consists of the encoder network that computes qφ(Z|X), and the decoder network that
computes pθ(X|Z) (Wingate and Weber, 2013), where ϕ and ¹ are model parameters.
Since we use the neural network for learning the distributions qφ(Z|X) and pθ(X|Z), the
parameters ¹ and ϕ are modeled by the weights of the encoder and decoder networks and
will be learned from the data during training. The marginal likelihood of an individual data
point can be rewritten as follows:

log pθ(xi) = DKL(qφ(Z|xi), pθ(Z|xi)) + L(¹, ϕ;xi), (1)

where

L(¹, ϕ;xi) = Eqφ(Z|xi)[log(pθ(xi|Z))]−DKL(qφ(Z|xi)||pθ(Z)). (2)

The first term (log-likelihood) in equation 2 can be interpreted as the reconstruction loss

and the second term (KL divergence) as the regularizer. The total loss over all samples can
be written as:

L(¹, ϕ,X) = LREC + LKL (3)

where LREC := Eqφ(Z|X)[log(pθ(X|Z))] and LKL := DKL(qφ(Z|X)||pθ(Z)).
Assuming the posterior distribution is Gaussian and using a 1-sample approximation

(Skafte et al., 2019), the likelihood term simplifies to:

LREC =
∑

i

−1

2
log(Ã2

θ(zi))−
(xi − µθ(zi))

2

2Ã2
θ(zi)

(4)

where Z ∼ p(Z) = N(0, I) (I is identity matrix), X|Z ∼ pθ(X|Z) = N(X|µθ(Z), Ãθ(Z)),
and Z|X ∼ qφ(Z|X) = N(Z|µφ(X), Ãφ(X)). µθ(Z), Ãθ(Z) are posterior mean and variance;
µφ(X), and Ãφ(X) are encoder mean and variance. Optimizing VAEs over mean and vari-
ance with a Gaussian posterior is challenging (Skafte et al., 2019). If the model has sufficient
capacity that there exists (ϕ, ¹) for which µθ(z) provides a sufficiently good reconstruction,
then the second term pushes the variance to zero before the term −1

2 log(Ã2
θ(xi))) catches

up (Blaauw and Bonada, 2016; Skafte et al., 2019).
One practical example of this behavior is in speech processing applications (Blaauw and

Bonada, 2016). The input is a spectral envelope which is a relatively smooth 1D curve.
Representing this as a 2D image produces highly structured and simple training images. As
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a result, the model quickly learns how to accurately reconstruct the input. Consequently,
reconstruction errors are small and the estimated variance becomes vanishingly small. An-
other example is 2D reconstruction of MRI images where the images from neighbouring
2D slices are highly correlated leading again to variance shrinkage (Volokitin et al., 2020).
To overcome this problem, variance estimation networks can be avoided using a Bernoulli
distribution or by simply setting variance to a constant value (Skafte et al., 2019).

2.2 Conditional Quantile Regression

In contrast to classical parameter estimation where the goal is to estimate the conditional
mean of the response variable given the feature variable, the goal of quantile regression is to
estimate conditional quantiles based on the data (Yu and Moyeed, 2001). The most common
application of quantile regression models is in cases in which a parametric likelihood cannot
be specified (Yu and Moyeed, 2001). Another motivation for quantile regression is that
quantiles are robust to outliers (John, 2015).

Quantile regression can be used to estimate the conditional median (0.5 quantile) or
other quantiles of the response variable conditioned on the input data. The ³-th conditional
quantile function is defined as qα(x) := inf{y ∈ R : F (y|X = x) ≥ ³} where F = P (Y ≤ y)
is a strictly monotonic cumulative distribution function. Similar to classical regression
analysis which estimates the conditional mean, the ³-th quantile regression (0 < ³ < 1)
seeks a solution to the following minimization problem for input x and output y (Koenker
and Bassett Jr, 1978; Yu and Moyeed, 2001):

argmin
θ

∑

i

Äα(yi − fθ(xi)) (5)

where xi are the inputs, yi are the responses, Äα is the check function or pinball loss (Koenker
and Bassett Jr, 1978) and f is the model paramaterized by ¹. The goal is to estimate the
parameter ¹ of the model f . The pinball loss is defined as:

Äα(y, fθ(xi)) :=

{

³(y − fθ(xi)) if (y − fθ(xi)) > 0

(1− ³)(y − fθ(xi)) otherwise.
(6)

Due to its simplicity and generality, quantile regression is widely applicable in classical
regression and machine learning to obtain a conditional prediction interval (Rodrigues and
Pereira, 2020). It can be shown that minimization of the loss function in equation 5 is
equivalent to maximization of the likelihood function formed by combining independently
distributed asymmetric Laplace densities (Yu and Moyeed, 2001):

argmax
θ

L(¹) =
³(1− ³)

Ã
exp

{

−
∑

i Äα(yi − fθ(xi))

Ã

}

where Ã is the scale parameter. Individual quantiles can be shown to be maximum likelihood
estimates of Laplacian density. In this paper we estimate two quantiles jointly and therefore
our loss function can be seen as a summation of two Laplacian likelihoods.
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3. Deep Uncertainty Estimation with Quantile Regression

3.1 Quantile Regression Varational Autoencoder (QR-VAE)

Instead of estimating the conditional mean and conditional variance directly at each pixel
(or feature), the outputs of our QR-VAE are multiple quantiles of the output distributions
at each pixel. This is achieved by replacing the Gaussian likelihood term in the VAE loss
function with the quantile loss (check or pinball loss). For the QR-VAE, if we assume a
Gaussian output, then only two quantiles are needed to fully characterize the Gaussian
distribution. Specifically, we estimate the median and 0.15-th quantile, which corresponds
to approximately one standard deviation (more precisely 1.036 std dev.) from the mean
under the Gaussian model. Our QR-VAE ouputs, QL (low quantile) andQH (high quantile),
are then used to calculate the mean and the variance. To find these conditional quantiles,
fitting is achieved by minimization of the pinball loss for each quantile. The resulting
reconstruction loss for the proposed model can be calculated as:

LREC =
∑

i

ÄL(xi − fθL(xi)) +
∑

ÄH(xi − fθH (xi))

where ¹L and ¹H are the parameters of the models corresponding to the quantiles QL and
QH , respectively. The minimization of this loss results in the desired quantile estimates for
each output pixel.

We reduce the chance of quantile crossing (consistency in the quantiles defined by:
Qτ1 ⊂ Qτ2 when Ä1 > Ä2) by limiting the flexibility of independent quantile regression. This
is done by simultaneous estimation of both quantiles with one neural network, rather than
training separate networks for each quantile (Rodrigues and Pereira, 2020). Note that the
estimated quantiles share network parameters except for the last layer.

While quantile regression guarantees coverage of data (based on the quantiles chosen)
in the training set, performance on a held-out validation data is not guaranteed. In order
to have a coverage guarantee for finite samples on unseen data, we deployed conformalized
quantile regression using a calibration set as explained in Romano et al. (2019). Con-
formal predictions provide a non-asymptotic, distribution-free coverage guarantee (Shafer
and Vovk, 2008). The main idea of conformal prediction is to fit a model on the training
data, then use the residuals on held-out calibration data to quantify the uncertainty in
future predictions. This offers finite sample distribution-free performance guarantees. The
conformalized quantile regression approach combines conformal prediction with quantile
regression (Sesia and Candès, 2020). For this, we use the approach presented in Romano
et al. (2019) that combines conformal prediction with quantile regression. This approach
inherits both the finite sample, distribution-free validity of conformal prediction and the
statistical efficiency of quantile regression.

3.2 Binary Quantile Regression U-Net (BQR U-Net)

For calculating quantiles of a binary response, consider the following model:

Y ∗ = h(x) + ϵ, Y = I{Y ∗ ≥ 0}

where Y ∗ is a hidden variable, h(x) is the true model, and ϵ is the noise. No distribution ϵ is
assumed for the model (Kordas, 2006). Since the indicator function is monotone increasing,
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and since quantiles are invariant under monotone transform, we have:

Qτ (Y |X) = I(Qτ (Y
∗|X)).

Qτ (Y |X) is the Äth conditional quantile of Y given X. By modeling Qτ (Y
∗|X) = fτ (X, ´)

with ´ as the parameter, the ´ parameter can be estimated by:

argmin
β

∑

i

Äτ (yi − I(fτ (xi, ´) ≥ 0))

which can be shown to be equivalent to a maximization problem (Kordas, 2006):

argmax
β

∑

i

[yi − (1− Ä)]I(fτ (xi, ´) ≥ 0)

However, the function is not differentiable, because of the use of the indicator function.
To apply gradient based optimization methods for training the neural network, we use the
smoothed approximation (Kordas, 2006):

argmax
β

∑

i

[yi − (1− Ä)]K(fτ (xi, ´)) (7)

where K(t) is smoothed version of the indicator function, with the following properties:

K(t) ≥ 0, ∀t ∈ R, lim
t→+∞

K(t) = 1, lim
t→−∞

K(t) = 0.

Specifically, to train the neural networks, we choose K(t) = 1
1+e−t , the sigmoid function,

which has the desired properties.

In this paper we us the BQR loss to solve the lesion detection and segmentation task. We
use a U-Net architecture with multiple heads (output branches), where each head estimates
a specific quantile for the labels at the pixel level. We observed that joint estimation of
multiple quantiles is computationally faster than solving for each separately, and also avoids
the quantile crossing problem.

A standard U-Net would use a cross-entropy loss for this segmentation task. Here we
replace this with the BQR loss. To estimate the n-th quantile, the BQR loss is given by:

Loss =
∑

n

∑

i

[yi − (1− Än)]K(fτn(xi, ´n)) (8)

where each f correspond to a head of U-Net, Ä1...Än shows different quantiles and ´1...´n are
estimated parameter for each quantile respectively. A single network is used to estimate all
quantiles. We chose to train a single network with output branches for each quantile since
there is a common network across quantiles except for the last layer. This makes training
of the quantiles consistent avoiding crossing of the estimated quantiles. We choose K(t) to
be the sigmoid function.
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4. Experiments and Results

We evaluate our proposed approaches for supervised and unsupervised deep quantile regres-
sion on (i) A simulated dataset for density estimation, (ii) Unsupervised lesion detection
in a brain imaging dataset, and (iii) Supervised lesion detection in a lung cancer dataset.
For the simulated data, we compare our results qualitatively and quantitatively, using KL
divergence between the learned distribution and the original distribution, with Comb-VAE
(Skafte et al., 2019) and VAE as baselines. For unsupervised lesion detection, we com-
pare our lesion detection results with the VAE, which estimates both mean and variance.
The area under the receiver operating characteristic curve (AUC) and dice coefficients are
used as performance metrics. We also performed the unsupervised lesion detection task
nonparametrically, estimating upper and lower quantiles of the images and then assigning
voxel lesion labels if their intensities are outside those quantiles. Using the BQR U-Net, we
estimated the thresholded probability of the labels for a dataset with multiple (4) annota-
tors per image. We compared the dice coefficient of these thresholded areas obtained using
the BQR U-Net with their corresponding counterparts calculated both using the softmax
probability of a deterministic U-Net and the ground truth (as determined by the four human
raters).

4.1 Simulations for VAE

Following Skafte et al. (2019), we first evaluate variance estimation using VAE, Comb-VAE,
and QR-VAE on a simulated dataset. The two moon dataset inspires the data generation
process for this simulation1. First, we generate 500 points in R

2 in a two-moon manner to
generate a known two-dimensional latent space. These are then mapped to four dimensions
(v1, v2, v3, v4) using the following equations:

v1(z1, z2) = z1 − z2 + ϵ
√

0.03 + 0.05(3 + z1)

v2(z1, z2) = z21 −
1

2
z2 + ϵ

√

0.03 + 0.03||z1||2

v3(z1, z2) = z1z2 − z1 + ϵ
√

0.03 + 0.05||z1||2

v4(z1, z2) = z1 + z2 + ϵ

√

0.03 +
0.03

0.02 + ||z1||2

where ϵ is sampled from a normal distribution. For more details about the simulation,
please refer to Skafte et al. (2019)2. After training the models, we first sample from z

using a Gaussian prior, and input that sample to the decoder to generate parameters of
the posterior pθ(x|z), and then sample again from the posteriors using the estimated means
and variances from the decoder. The distribution of these generated samples represents the
learned distribution in the generative model.

In Figure 1, we plot the pairwise joint distribution for the input data as well as the
generated samples using various models. We used Gaussian kernel density estimation to
model the distributions from 1000 samples in each case. We observe that the standard VAE

1. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons

2. https://github.com/SkafteNicki/john/blob/master/toy_vae.py
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QR-VAE (KL=0.25)VAE KL=(0.64)Ground truth Comb-VAE (KL=0.30)

Figure 1: Pairwise joint distribution of the ground truth and generated distributions. Top:
v1 vs. v2 dimensions. Bottom: v2 vs v3 dimensions. From left to right: original
distribution and distributions computed using VAE, Comb-VAE and QR-VAE,
respectively. We also list the KL divergence between the learned distribution and
the original distribution in each case.

underestimates the variance resulting in insufficient learning of the data distribution. The
samples from our QR-VAE model capture a data distribution more similar to the ground
truth than either standard VAE or Comb-VAE. Our model also outperforms VAE and
Comb-VAE in terms of KL divergence between input samples and generated samples as
can be seen in Figure 1. The KL-divergence is calculated using universal-divergence, which
estimates the KL divergence based on k-nearest-neighbor (k-NN) distance (Wang et al.,
2009)3.

4.2 Unsupervised Lesion Detection

4.2.1 Network Architecture

Next, we investigate utility of the proposed QR-VAE for the medical imaging application of
detecting brain lesions. Multiple automatic lesion detection approaches have been developed
to assist clinicians in identifying and delineating lesions caused by congenital malformations,
tumors, stroke or brain injury. The VAE is a popular framework among the class of unsu-
pervised methods (Chen and Konukoglu, 2018; Baur et al., 2018; Pawlowski et al., 2018).
After training a VAE on a lesion free dataset, presentation of a lesioned brain to the VAE
will typically result in reconstruction of a lesion-free equivalent. The error between input
and output images can therefore be used to detect and localize lesions. However, selecting
an appropriate threshold that differentiates lesion from noise is a difficult task. Further-
more, using a single global threshold across the entire image will inevitably lead to a poor
trade-off between true and false positive rates. Using the QR-VAE, we can compute the
conditional mean and variance of each output pixel. This allows a more reliable and sta-

3. https://pypi.org/project/universal-divergence

10

https://pypi.org/project/universal-divergence


Deep Quantile Regression for Uncertainty Estimation

tistically principled approach for detecting anomalies by thresholding based on computed
p-values. Further, this approach also allows us to correct for multiple comparisons.

The network architectures of the VAE and QR-VAE are chosen based on previously
established architectures (Larsen et al., 2015). Both the VAE and QR-VAE consist of
three consecutive blocks of convolutional layer, a batch normalization layer, a rectified
linear unit (ReLU) activation function and a fully-connected layer in the bottleneck for the
encoder. The decoder includes three consecutive blocks of deconvolutional layers, a batch
normalization layer and ReLU followed by the output layer that has 2 separate deconvolution
layers (for each output) with sigmoid activations. For the VAE, the outputs represent
mean and variance while for QR-VAE the outputs represent two quantiles from which the
conditional mean and variance are computed at each voxel. The size of the input layer is
3×64×64 where the first dimension represents three different MRI contrasts: T1-weighted,
T2-weighted, and FLAIR for each image.

4.2.2 Training, Validation, and Testing Data

For training we use 20 central axial slices of brain MRI datasets from a combination of 119
subjects from the Maryland MagNeTS study (Gullapalli, 2011) of neurotrauma and 112
subjects from the TrackTBI-Pilot (Yue et al., 2013) dataset, both available for download
from https://fitbir.nih.gov. We use 2D slices rather than 3D images to make sure we
had a large enough dataset for training the VAE. These datasets contain T1, T2, and FLAIR
images for each subject, and have sparse lesions. We have found that in practice both VAEs
have some robustness to lesions in these training data so that they are sufficient for the net-
work to learn to reconstruct lesion-free images as required for our anomaly detection task.
The three imaging modalities (T1, T2, FLAIR) were rigidly co-registered within subject
and to the MNI brain atlas reference and re-sampled to 1mm isotropic resolution. Skull and
other non-brain tissue were removed using BrainSuite (https://brainsuite.org). Subse-
quently, we reshaped each sample into 64×64 dimensional images and performed histogram
equalization to a lesion free reference. We separated 40 subjects as the validation/calibration
set.

We evaluated the performance of our model on a test set consisting of 20 central axial
slices of 28 subjects from the ISLES (The Ischemic Stroke Lesion Segmentation) database
(Maier et al., 2017) for which ground truth, in the form of manually-segmented lesions, is
also provided. We performed similar pre-processing as for the training set.

4.2.3 Model-free Anomaly Detection

For simplicity, we first performed the lesion detection task using the QR-VAE without the
Gaussian assumption as shown in Figure 2. We trained the QR-VAE to estimate the Q0.025

and Q0.975 quantiles. We then used these quantiles directly to threshold the input images
for anomalies. This leads to a nominal 5% (per pixel) false positive rate. This method
is simple and avoids the need for validation data to determine an appropriate threshold.
However, without access to p-values we are unable to determine a threshold that can be
used to correct for multiple comparisons by controlling the false-discovery or family-wise
error rate. A model needs to be assumed to obtain p-value as we do in 4.2.4. The Dice
coefficient for this model was 0.37 and 0.32 with and without conformalization respectively

11

https://fitbir.nih.gov
https://brainsuite.org


Akrami et al. 2022

Input

QL

QH

input<QL or input> QH

Ground-truth

Figure 2: Model-free lesion detection for ISLES dataset using QL = Q0.025 and QH =
Q0.975. Pixels outside the [QL, QH ] interval are marked outliers. Estimated
quantiles are the outputs of QR-VAE.
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Figure 3: Estimating two quantiles in the ISLES dataset using QR-VAE. Using the Gaus-
sian assumption for the posterior, there is 1-1 mapping from these quantiles to
mean and standard deviation.
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Figure 4: Pixel-wise quantile image thresholds for a single test image as a function of quan-
tile computed using the QR-VAE.

Figure 5: Vertical axis indicates the fraction of pixels in the entire testing set whose intensity
is below the corresponding quantile for that pixel as computed using the QR-VAE.
Note that as aggregated over the entire test set, the computed pixel-wise quantiles
closely match the true distribution assuming anomaly-free data (in practice the
fraction of anomalous pixels is a very small fraction of the total, so the presence
of lesions in the data should not substantially affect this plot).
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(see Table 1). For validating the accuracy of the computed quantiles we calculated the the
percentage of pixels that lie below the estimated quantiles. Even in the extreme quantiles
the percentage of pixels with lower intensity than the threshold predicted by each quantile
was very close to each of the estimated quantile values (Figures 4 and 5).

4.2.4 Gaussian model for anomaly detection

In a second experiment, we trained a VAE with a Gaussian posterior and the QR-VAE as
illustrated in Figure 3, in both cases estimating conditional mean and variance. Specifically,
we estimated the Q0.15 and Q0.5 quantiles for the QR-VAE and used these values to compute
pixel-wise mean and variance assuming a Gaussian model. By comparing the pixel intensity
to the Gaussian model values, we can compute p-values for each pixel. In order to identify
or segment lesions, we threshold the pixel-wise p−values. Naively applying a threshold
separately at each pixel will result in a large number of false positives because of the
multiple comparisons problem (Shaffer, 1995). For example, if all pixels are independent,
and follow the null distribution, then thresholding at an ³ = 0.05 significance level value
would lead to 5% of all pixels being identified as lesion, even though none were present.
While in practice this number is much lower because of spatial correlation in the image, it
is still important to account for multiple comparisons.

The best known such adjustment is the Bonferroni correction (Bland and Altman, 1995).
In medical imaging applications, this correction tends to be too conservative since pixels
are correlated. Other methods for multiple comparison correction are designed to control
the Family-Wise Error Rate (FWER, probability of making one or more false discoveries)
(Tukey, 1953) or the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995). The
FDR is the expected ratio of the number of false positives to the total number of positives
(rejections of the null). In other words, in an FDR-corrected thresholding at an ³ = 0.05
significance level, we would expect 5% of the detected lesion pixels to be false positives. Here
we use the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) with ³ = 0.05.
As shown in Figure 6, the VAE underestimates the variance, so that most of the brain
shows significant p-values, even with FDR correction. On the other hand, the QR-VAE’s
thresholded results detect anomalies that reasonably match the ground truth. To produce
a quantitative measure of performance, we also computed the area under the ROC curve
(AUC) for VAE and QR-VAE. To do this we first computed z-score images by subtracting
the mean and normalizing by standard deviation. We then applied a median filtering with
a 7 × 7 window. By varying the threshold on the resulting images and comparing it to
ground truth, we obtained AUC values of 0.52 for the VAE and 0.92 for the QR-VAE. We
also obtained Dice coefficient values of 0.006 for the VAE and 0.37 for the QR-VAE. All
quantitative measurements were computed on a voxel-wise basis. Also note that with the
conformalized formulation, the Dice coefficient further increased to 0.41 (Table 1). Results
using the conformalized formulation improved performance of the QR-models by calibrating
the quantiles, resulting in an increase in the Dice coefficients in both Gaussian and model-
free cases.
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Figure 6: Lesion detection for the ISLES dataset. A) VAE with mean and variance estima-
tion B) QR-VAE. First, we normalize the error value using the pixel-wise model’s
estimates of mean and variance. The resulting z-score is then converted to an
FDR-corrected p-value and the images are thresholded at a significance level of
0.05. The bottom rows represent ground truth based on expert manual segmen-
tation of lesions.

15



Akrami et al. 2022

Table 1: Compariaon of the performance of unsupervised lesion detection for VAE and QR-
VAE, with and without conformalization. QR-VAE-conf: conformalized QR-AVE;
QR-VAE-GS: Gaussian QR-VAE; QR-VAE-GS-conf: Gaussian conformalized QR-
VAE.

VAE QR-VAE QR-VAE-conf QR-VAE-GS QR-VAE-GS-conf

AUC 0.52 N/A N/A 0.92 0.92

Dice coefficient 0.006 0.32 0.37 0.37 0.41

4.3 Supervised Lesion Detection

We evaluated our BQR supervised approach on the LIDC-IDRI dataset (Armato III et al.,
2011). This data consists of 1018 3D thorax CT scans annotated by four radiologists tasked
with finding multiple lung nodules in each scan. The data is ideal for capturing inherent
uncertainty in the data labels that comes from disagreement between experts. The data
was preprocessed as described by Kohl et al. (2018). They extracted 2D slices centred
around the annotated nodules and generated 180 x 180 images when at least one expert
has segmented a nodule. This process resulted in a dataset of 8882 images in the training
set, 1996 images in the validation set, and 1992 images in the test set. We reshaped the
data into 128 x 128 images for input to the neural network. We used a U-Net architecture
(Ronneberger et al., 2015) with 2D convolutional layers. The output layer was modified to
generate four quantiles with four output branches using softmax activation. We compared
the performance of BQR U-Net with the deterministic U-Net (Ronneberger et al., 2015).
As ground truth for the comparison, first we estimated agreement maps for each test image
by combining the lesion annotations of the four raters. This generates, for each image, an
annotation with P (Y = 1|X) values greater than or equal to 0, 0.25, 0.5, 0.75,1. X here
represents the input image. Given an input image, the BQR U-Net generates output regions
where probabilities of the label Y = 1 are at or above the given quantile thresholds. The
BQR U-Net was trained with the loss function in eq. 8. For comparison, the deterministic
U-Net was trained using the binary cross-entropy loss. The BQR U-Net was trained to
output 0.125, 0.375, 0.625, 0.875 quantiles. These quantile values represent the centroids
of the intervals between the test data quantiles (0, 0.25, 0.5, 0.75,1) representing 0-4 rater
agreements respectively. We used these thresholds rather than the same quantiles as the test
data to avoid operating at the boundary points between operators resulting from combining
data from four raters only. To generate the corresponding estimated quantiles for the
deterministic U-Net we thresholded the softmax probability at 0.125, 0.375, 0.625, 0.875.

Both deep BQR and deterministic U-Net diverged to the trivial solution of predicting
all labels as zero due to the extreme class imbalance when initialized with a cold start.
We therefore warmed up both models using a weighted cross-entropy loss for one epoch
weighting samples by 1 ÷ 166, the ratio of the zero to one labels in the training set. We
trained both models for 5 epochs. Our results show no significant improvement for deep
BQR compared to the cross-entropy loss in terms of Dice coefficients for different agreement
areas. The Dice coefficients between estimated probability areas for deterministic U-Net
and BQR U-Net are plotted in Figure 8 and summarized in Table 2. In the figure we show
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Table 2: The mean (std dev) of the Dice coefficients between estimated probability regions
(P (Y = 1|X) ≥ ³, where ³ is (0.25, 0.5, 0.75, 1); GT: ground truth, DT: deter-
ministic, P = P (Y = 1|X)

P ≥ 0.25 P ≥ 0.5 P ≥ 0.75 P = 1

BQR U-Net vs GT 0.68(0.27) 0.60(0.34) 0.50(0.40) 0.27(0.35)

DT U-Net vs GT 0.67(0.27) 0.59(0.34) 0.50(0.38) 0.32(0.37)

DT U-Net vs BQR U-Net 0.81(0.27) 0.63(0.40) 0.40(0.43) 0.16(0.33)

Prob. U-Net vs GT 0.60(0.26) 0.60(0.39) 0.51(0.43) 0.31(0.36)

the distribution of the Dice coefficients between the BQR and ground truth quantiles, DT
(deterministic U-Net) and ground truth, and also between DT and BQR. In some cases,
particularly for higher quantiles, there was low agreement between human raters in the
ground-truth test data. For example, 64 percent of the test data showed zero pixels in
common between all four human raters, leaving the 0.875 quantile empty for those images.
We therefore computed the Dice coefficients only over those regions in which the test data
had a non-empty data set for that quantile. The results show reasonable agreement for
the 0.125, 0.375 and 0.625 quantiles, but relatively poor results for the 0.875 quantile.
Surprisingly, results for BRQ and the determinsic U-Net (DT U-Net) are very similar, even
though the actual degree of overlap between the two is no better than between each of them
and the ground truth labels. The fact that both methods perform poorly for the 0.875
quantile reflects both that the data are of relatively poor quality in this region and also
that performance is likely limited by the imbalance in the training data between non-lesional
areas and lesions confidently identified by all four raters. Here we used the deterministic
U-Net as a backbone since it is arguably the most commonly used network for medical
image segmentation task. Other networks could also be used as a backbone. To investigate
whether we would expect further improvements using a probabilistic backbone, we also
implemented the Probabilistic U-Net (Prob. U-Net) (Kohl et al., 2018) to capture rater
uncertainty. Our results show that for the quantile estimation task, the performance of
Prob. U-Net and U-Net are comparable. As a result, it appears unlikely that replacing the
U-Net with its proabilistic form in the backbone would lead to significant improvements.

5. Conclusion

Quantile regression is a simple yet powerful method for estimating uncertainty both in
supervised and unsupervised lesion detection. We proposed novel cost functions to apply
quantile regression and capture confidence intervals for lesion segmentation.

In the unsupervised framework we used the VAE, a popular model for unsupervised
lesion detection (Chen and Konukoglu, 2018; Baur et al., 2018; Pawlowski et al., 2018).
VAEs can be used to estimate reconstruction probability instead of reconstruction error
for anomaly detection tasks. For calculating reconstruction probability, VAE models the
output as a conditionally independent Gaussian characterized by means and variances for
each output dimension. Simultaneous estimation of the mean and the variance in VAE un-
derestimates the true variance leading to instabilities in optimization (Skafte et al., 2019).
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Figure 7: Top row: results of U-Net delineation of lesion boundaries. Bottom row: re-
sults of deterministic cross-entropy U-Net. (a) The original slice of the lung
image; (b) estimated probability regions corresponding to 0.125,0.375,0.625,0.875
quantile levels shown with Red, green, purple and yellow colors respectively; (c)
the estimate of thresholded lesion boundary from human raters corresponding to
agreement between 1,2,3 and 4 raters.

Figure 8: Violin plots of the Dice coefficients between quantiles (0.125, 0.375, 0.625, 0.875))
and rater agreement maps for the test datasets

, GT: ground truth, DT: binary cross-entropy (Deterministic U-Net), QR: quantile regres-
sion (BQR U-Net). The fraction of empty quantiles in the ground truth (excluded from
Dice coefficient computations) were 0.07, 0.31, 0.45, 0.64 respectively. The width of the vi-
olin indicates the fraction of the dataset as a function of the dice coefficient.
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For this reason, classical VAE formulations that include both mean and variance estimates
are rarely used in practice. Typically, only the mean is estimated with variance assumed
constant (Skafte et al., 2019). To address this problem in variance estimation, we proposed
an alternative quantile-regression model (QR-VAE) for improving the quality of variance es-
timation. We used quantile regression and leveraged the Guassian assumption to obtain the
mean and variance by estimating two quantiles. We showed that our approach outperforms
VAE as well as a Comb-VAE which is an alternative approach for addressing the same issue,
in a synthetic as well as real world dataset. Our approach also has a more straightforward
implementation compared to Comb-VAE. As a demonstrative application, we used our QR-
VAE model to obtain a probabilistic heterogeneous threshold for a brain lesion detection
task. This threshold results in a completely unsupervised lesion (or anomaly) detection
method that avoids the need for a labeled validation dataset for principled selection of an
appropriate threshold to control the false discovery rate. Beyond the current application
we note that Quantile regression is applicable to deep learning models for medical imaging
applications beyond the VAE and anomaly detection as the pinball loss function is easy to
implement and optimize and can be applied to a broader range of network architectures
and cost functions.

For supervised lesion detection, we present deep binary quantile regression to estimate
label uncertainty. Specifically, we use this technique to estimate quantiles of the labels that
represent uncertainty. The lesion segmentations generated for each quantile reflect this
uncertainty. Using LIDC data with 4 annotations we aimed to estimate the disagreement
between the annotators. Although it has been reported that deep binary QR has a better
performance in imbalanced datasets in lesion segmentation task with extreme imbalance
toward the class zero (normal), warming up the model was still needed in order to prevent
it from converging to the trivial solution. Our result show no significant improvement in
terms of dice coefficient between ground truth and estimated areas of agreement for deep
binary QR compared to a deterministic U-Net. We found relatively small agreement for
the 0.875 quantile region for these two estimations (row three, Table 2) demonstrating
that although we obtain similar performance, these two estimators are not annotating the
same region regions. This finding indicates the potential for further improvements in the
performance of both methods. Based on the current results, while numerical results are
similar, the fact that with fewer training samples QR is less likely to diverge than the
deterministic U-Net indicates that the QR approach may be more robust and stable.

We investigated the advantages of using quantile regression in both supervised and
unsupervised settings. In the unsupervised framework, the estimated confidence interval is
used to capture uncertainty from which can identify outliers that represent our detected
lesions. We demonstrated the advantage of using this quantile regression approach in the
VAE setting. In the supervised framework, we used BQR to estimate the uncertainty of
raters for the case where multi-rater data is available for training (and testing).
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