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Abstract

Machine learning models deployed on medical imaging tasks must be equipped with
out-of-distribution detection capabilities in order to avoid erroneous predictions. It is unsure
whether out-of-distribution detection models reliant on deep neural networks are suitable
for detecting domain shifts in medical imaging. Gaussian Processes can reliably separate
in-distribution data points from out-of-distribution data points via their mathematical
construction. Hence, we propose a parameter efficient Bayesian layer for hierarchical convo-
lutional Gaussian Processes that incorporates Gaussian Processes operating in Wasserstein-2
space to reliably propagate uncertainty. This directly replaces convolving Gaussian Pro-
cesses with a distance-preserving affine operator on distributions. Our experiments on
brain tissue-segmentation show that the resulting architecture approaches the performance
of well-established deterministic segmentation algorithms (U-Net), which has not been
achieved with previous hierarchical Gaussian Processes. Moreover, by applying the same
segmentation model to out-of-distribution data (i.e., images with pathology such as brain
tumors), we show that our uncertainty estimates result in out-of-distribution detection
that outperforms the capabilities of previous Bayesian networks and reconstruction-based
approaches that learn normative distributions. To facilitate future work our code is publicly
available1.

Keywords: Gaussian Processes, Image Segmentation, Out-of-distribution Detection

1. Introduction

Deep learning methods have achieved state-of-the-art results on a plethora of medical image
segmentation tasks to clinical risk assessment (Zhou et al., 2021; Tang, 2019; Imai et al., 2020).
However, their application in clinical settings remains challenging due to issues pertaining to
lack of reliability and miscalibration of confidence estimates. Reliably estimating uncertainty
in predictions is also of vital interest in adjacent machine learning fields such as reinforcement

1. https://github.com/SebastianPopescu/DistGP_Layers
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learning, to guide exploration, or in active learning, to guide the selection of data points for
the next iteration of labelling. Most research into incorporating uncertainty into medical
image segmentation has gravitated around modelling inter-rater variability and the inherent
aleatoric uncertainty associated to the dataset, which can be caused by noise or inter-class
ambiguities, alongside modelling the uncertainty in parameters (Czolbe et al., 2021). However,
less focus has been placed on how models behave when processing unexpected inputs which
differ from the characteristics of the training data. Such inputs, often called anomalies,
outliers or out-of-distribution samples, could possibly lead to deleterious effects in healthcare
applications where predictive models may encounter data that is corrupted or from patients
with diseases that the model is not trained for (Curth et al., 2019; Mårtensson et al., 2020).

Out-of-distribution (OOD) detection in medical imaging has been mostly approached
through the lens of reconstruction-based techniques involving some form of encoder-decoder
network trained on normative datasets (Chen et al., 2019, 2021). Conversely, we focus
on enhancing task-specific models (e.g., a segmentation model) with reliable uncertainty
quantification that enables outlier detection. Standard deep neural networks (DNNs), despite
their high predictive performance, often exhibit unreasonably high confidence in predictions
estimates when processing unseen samples that are not from the data manifold of the training
set (e.g., in the presence of pathology under the hypothesis of training data being composed
of normal subjects or in a more general setting the presence of motion artifacts never seen in
training images). To alleviate this, Bayesian approaches that assign posteriors over weights
( MC Dropout (Gal and Ghahramani, 2016b) included ) or in function space ( Repulsive
Deep Ensembles (D’Angelo and Fortuin, 2021) included ) have been proposed (Wilson and
Izmailov, 2020). However, either assigning priors on weights or in function space does not
necessarily lend itself to reliable OOD detection capabilities by virtue of inspecting the
predictive variance of the model as was shown in Henning et al. (2021). The authors argue
that both infinite-width networks, trained via the Neural Network Gaussian Process (NNGP)
kernel (Lee et al., 2017), or finite-width networks trained via Hamiltonian Monte Carlo
(Neal et al., 2011) are not reliable for OOD detection since they show that the associated
NNGP kernel is not correlated with distances between objects in input space. This loss of
distance-awareness after encoding data has catastrophic effects on OOD detection, as we
will soon see. Similarly, Foong et al. (2019) describe a limitation in the expressiveness of
the predictive uncertainty estimate given by mean-field variational inference (MFVI) when
applied as the inference technique for Bayesian Neural Networks (BNNs). Concretely, MFVI
fails in offering quality uncertainty estimates in regions between well-separated clusters
of data, which the authors coin as in-between uncertainty, with potentially catastrophic
consequences for active learning, Bayesian optimisation or robustness to out-of-distribution
data. In this paper we follow an alternative approach, using Gaussian Processes (GP) as the
building block for deep Bayesian networks.

The use of GPs for image classification has garnered interest in the past years. Hybrid
approaches, whereby a DNN’s embedding mechanism is trained end-to-end with a GP as the
classification layer, were the first attempts to unify the two approaches (Bradshaw et al.,
2017). The first convolutional kernel was proposed in Van der Wilk et al. (2017), constructed
by aggregating patch response functions. This approach was stacked on feed forward GP
layers applied in a convolutional manner, with promising improvements in accuracy compared
to their shallow counterpart (Blomqvist et al., 2018).
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We expand on the aforementioned work, by introducing a simpler convolutional mechanism,
which does not require convolving GPs at each layer and hence alleviates the computational
cost of optimizing over inducing points’ locations residing in high dimensional spaces alongside
the issues brought upon by multi-output GPs. We propose a plug-in Bayesian layer more
amenable to CNN architectures. More concretely, we seek to replace each individual compo-
nent of a standard convolutional layer in convolutional neural networks (CNNs), respectively
the convolved filters and the non-linear activation function. Firstly, we impose constraints on
the filter such that we have an upper bound on distances after the convolution with regards
to distances between the same objects beforehand. This will ensure that objects which were
close in previous layers will remain close going forward, which as we shall see later on is
a fundamental property for reliable OOD detection. Moreover, directly using convolved
filters as opposed to convolved GPs (Blomqvist et al., 2018) solves the issue with optimizing
high-dimensional inducing points’ locations alongside introducing a simpler mechanism by
which we can introduce correlations between channels (Nguyen et al., 2014). Secondly,
we replace the element-wise non-linear activation functions with Distributional Gaussian
Processes (DistGP) (Bachoc et al., 2017) used in one-to-one mapping manner, essentially
acting as a non-parametric activation function. A variant of DistGP used in a hierarchical
setting akin to Deep Gaussian Processes (DGP) (Damianou and Lawrence, 2013) was shown
to be better at detecting OOD due to both kernel and architecture design (Popescu et al.,
2020). In this paper we will show that our proposed module is also suited for OOD detection
on both toy/image data and biomedical scans.

In the remainder of this section we provide a deeper exploration of uncertainties used
in literature for biomedical image segmentation, subsequently introducing the concept of
distance-awareness and imposing smoothness constraints on learned representations in a
deep network as prerequisites for reliable OOD detection. These two properties will be key
to motivate the imposed constraints and architecture choice of our proposed probabilistic
module later on.

1.1 Uncertainty quantification for biomedical imaging segmentation

While prediction uncertainty can be computed for standard neural networks by using
the softmax probability, these uncertainty estimates are often overconfident (Guo et al.,
2017; McClure et al., 2019). Research into Bayesian models has focused on a separation of
uncertainty into two different types, aleatoric (data intrinsic) and epistemic (model parameter
uncertainty). To formalize this difference, we consider a multi-class classification problem,
with classes denoted as {y1, · · · , yC} and model parameters denoted by θ. We have the
following predictive equation at testing time:

p(yc|x∗,D) =

∫

p(yc | x∗,Θ)
︸ ︷︷ ︸

Aleatoric Uncertainty

p(θ|D)
︸ ︷︷ ︸

Epistemic Uncertainty

dθ (1)

Aleatoric uncertainty is irreducible, given by noise in the data acquisition process and has
been considered in medical image segmentation (Monteiro et al., 2020), whereas epistemic
uncertainty can be reduced by providing more data during model training. This has also
been studied in segmentation tasks (Nair et al., 2020). Previous work proposed to account
for the uncertainty in the learned model parameters using an approximate Bayesian inference
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over the network weights (Kendall et al., 2015). However, it was shown that this method
may produce samples that vary pixel by pixel and thus may not capture complex spatially
correlated structures in the distribution of segmentations maps. The probabilistic U-Net
(Kohl et al., 2018) produces samples with limited diversity due to the fact that stochasticity
is introduced in the highest resolution level of the U-Net. To solve this issue, Baumgartner
et al. (2019) introduce a hierachical structure between the different levels of the U-Net,
hence introducing stochasticity at each level. Another improvement on the Probabilistic
U-Net comes by adding variational dropout (Kingma et al., 2015) to the last layer to gain
epistemic uncertainty quantification properties (Hu et al., 2019). All the models previously
introduced relied on multiple annotations of the images with the intended goal of capturing
this uncertainty in annotations with the aid of sampling from some form of latent variables
which encode information about the whole image at varying scales of the U-Net. However,
none of these previous works test how their models behave in the presence of outliers.

1.2 Distributional Uncertainty as a proxy for OOD detection

Besides the dichotomy consisting of aleatoric and epistemic uncertainty, reliably highlighting
certain inputs which have undergone a domain shift (Lakshminarayanan et al., 2017) or
out-of-distribution samples (Hendrycks and Gimpel, 2016) has garnered a lot of interest in
the past years. Succinctly, the aim is to measure the degree to which a model knows when
it does not know, or more precisely if a network trained on a specific dataset is evaluated
at testing time on a completely different dataset (potentially from a different modality or
another application domain), then the expectation is that the network should output high
predictive uncertainty on this set of data points that are very far from the training data
manifold.

A problem with introducing this new type of uncertainty is how to disentangle it from
epistemic uncertainty. For example, in the Deep Ensembles paper (Lakshminarayanan et al.,
2017), the authors propose to measure the disagreement between different sub-models of

the deep ensemble
M∑

m=1
KL [p(y | x; θm)‖E [p(y | X)]] for M sub-models with associated sub-

model parameters θm and E [p(y | x)] = 1
M

M∑

m=1
p(y | x; θm) is the prediction of the ensemble.

We remind ourselves that epistemic uncertainty can be reduced by adding more data. By this
logic, epistemic uncertainty cannot be reduced outside the data manifold of our dataset since
we don’t add data points which do not stem from the same data generative pipeline (this
is not true in the case of OOD detection models which explicitly use OOD samples during
training/testing (Liang et al., 2017; Hafner et al., 2020)). Hence, epistemic uncertainty can
only be reduced inside the data manifold and should be zero outside the data manifold
(assuming model is distance-aware, which we will subsequently define). Conversely, our
chosen measure for OOD detection should grow outside the data manifold and be close to
or 0 inside the data manifold. With this in mind, the disagreement metric introduced in
Lakshminarayanan et al. (2017) cannot achieve this separation, confounding the two types of
uncertainty.

Malinin and Gales (2018) introduced for the first time the separation of total uncertainty
into three components: epistemic, aleatoric and distributional uncertainty. To make the
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distinction clearer, the authors argue that aleatoric uncertainty is a "known-unknown",
whereby the model confidently states that an input data point is hard to classify (class
overlap). Contrary, distributional uncertainty is an "unknown-unknown" due to the fact that
the model is unfamiliar with the input space region that the test data comes from, thereby
not being able to make confident predictions.

Figure 1: Probability simplex for a 3 class classification problem, where corners corresponds
to a class; Each point represents a categorical distribution, with brighter colors indicating
higher density of the underlying ensemble. Epistemic Uncertainty captures uncertainty
in model parameters caused by lack of data or model non-identifiability, with the ensemble
of the predictions being concentrated in a corner of the probability simplex albeit with an
increased diversity; Aleatoric Uncertainty captures class overlap, with the ensemble of
predictions being confidently mapped to the highest predictive entropy; Distributional
Uncertainty captures domain shift, with the ensemble of predictions being centred in the
middle with highest possible degree of diversity;

We briefly introduce the uncertainty decomposition mechanism introduced in Malinin
and Gales (2018). Considering equation (1), by using Monte Carlo integration of above
equation and computing the predictive entropy, we would not be able to discern between high
predictive entropy due to aleatoric uncertainty (class overlap) or distributional uncertainty
(dataset/domain shift). Hence, Malinin and Gales (2018) propose to introduce a latent
variable µ over the categorical variables corresponding to each class, parametrized as a
distribution over distributions on a simplex, p(µ|x∗, θ). The intuition behind this Dirichlet
distribution over the probability simplex is that OOD points should be scattered, whereas
in-distribution points should concentrate. We can now re-write our predictive equation as:

p(yc|x∗,D) =

∫ ∫

p(yc|x∗, µ)
︸ ︷︷ ︸

Aleatoric Uncertainty

p(µ|x∗, θ)
︸ ︷︷ ︸

Distributional Uncertainty

p(θ|D)
︸ ︷︷ ︸

Epistemic Uncertainty

dµ dθ (2)

The authors argue that using a measure of spread of the ensemble ( after sampling from
p (θ | D)) will be more informative. We remind ourselves that Mutual Information between
variable X and Y can be expressed in terms of the difference between entropy and conditional
entropy: I(X;Y ) = H(P (X)) − H(P (X|Y )). Hence we can use the Mutual Information
measure between model predictions and Dirichlet parameters to obtain a better measure of
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uncertainty. We integrate out over θ in the main equation and we get:

I[y, µ|x∗,D]
︸ ︷︷ ︸

Distributional Uncertainty

= H[Ep(µ|D)p(y|x∗, µ)]
︸ ︷︷ ︸

Total Uncertainty

−Ep(µ|D)[H[P (y|x∗, µ)]]
︸ ︷︷ ︸

Aleatoric Uncertainty

(3)

Connections between this uncertainty disentanglement framework specialized for DNN-
parametrized Dirichlet distributions and uncertainty disentanglement in GP will be subse-
quently made clearer in subsection 2.3. Distributional uncertainty will be the key uncertainty
score used throughout this paper to assess whether input data points are inside or outside
the data manifold.

1.3 Distance awareness and smoothness for out-of-distribution detection

Perhaps the greatest inspiration and motivation for this paper resides in the theoretical
framework introduced in Liu et al. (2020), by which the authors outline what are some key
mathematical conditions for provably reliable OOD detection in DNNs. We commence by
briefly outlining the ideas introduced in aforementioned paper.

For an abstract data generating distribution p (y | x), where y is scalar, respectively x ∈
X ⊂ R

D with the input data manifold being equipped with a suitable metric ‖·‖X . We consider
our training data D = {(xi, yi)1:n} to be sampled from a subset of the full input space xin−d ∈
X, where the in-d abbreviation stems from in-distribution. With this in mind, we can consider
the in-distribution data generating distribution pin−d (y | x) = p (y | x, x ∈ Xin−d), respec-
tively the out-of-distribution data generating distribution pood (y | x) = p (y | x, x /∈ Xin−d).
Hence, it is safe to assume the full data generating distribution p (y | x) is composed as a
mixture of the in-distribution and OOD generating distributions:

p (y | x) = p (y, x ∈ Xin−d | x) + p (y, x /∈ Xin−d | x) (4)

= p (y | x, x ∈ Xin−d) p (x ∈ Xin−d) + p (y | x, x /∈ Xin−d) p (x /∈ Xin−d) (5)

= pin−d (y | x) p (x ∈ Xin−d) + pood (y | x) p (x /∈ Xin−d) (6)

Evidently, during training we are only learning pin−d (y | x) since we only have access to
D ⊂ Xin−d. Therefore, our model is completely in the dark with regards to pood (y | x).
These two data generating distributions more often than not are fundamentally different
(e.g., having trained a model on T1w MRI scans, subsequently feeding it with T2w MRI
scans, an imaging modality which has an almost inverse scaling to represent varying brain
tissue). With this in mind, Liu et al. (2020) argue that the optimal strategy is for pood (y | x)
to be predicted as a uniform distribution, thus signalling the lack of knowledge of the model
on this different input domain. We can now recall the distinction made by Malinin and
Gales (2018), between "known-unknowns" (aleatoric uncertainty, e.g., class overlap) and
"unknown-unknowns" (distributional uncertainty, e.g., domain shift), both of which have an
uninformative predictive distribution (maximum predictive entropy). However, to disentangle
these two types of uncertainty, we need a second-order type of uncertainty that basically
scatters logit samples when distributional uncertainty is high, respectively accurately samples
logits to maximum predictive entropy in the case of high aleatoric uncertainty. We now
formalize this desiderata by a condition called "distance awareness" in Liu et al. (2020).
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Definition 1 (Definition 1 in Liu et al. (2020)) We consider the predictive distribution
for unseen point p (y∗ | x∗) at testing time, for model trained on Xin−d ∈ X, with the data
manifold being equipped with metric ‖·‖X . Then, we can affirm that p (y∗ | x∗) is distance-
aware if there exists summary statistic u (x∗) of p (y∗ | x∗) that embeds the distance between
Xin−d and x∗:

u (x∗) = v
[
Ex∼Xin−d

[
‖x∗ − x‖2X

]]
(7)

, where v is a monotonic function that increases with distance.

Definition 1 does not make any assumptions related to the architecture of the model from
which the predictive distribution stems. In practice we would have the following composition
to arrive at the logits logit(x∗) = f ◦enc (x∗), where enc (·) represents a network that outputs
the representation learning layer and f (·) is the output layer. In Liu et al. (2020) the authors
propose the following two conditions to ensure that the composition is distance-aware:

• f(·) is distance-aware

• Ex∼Xin−d

[
‖x∗ −X‖2X

]
≈ Ex∼Xin−d

[

‖enc(x∗)− enc(X)‖2enc(X)

]

The last condition means that distances between data points in input space should be
correlated with distances in learned representation, which is equipped with a ‖·‖enc(X) metric.
In our work, we will use GPs as f , because as we will see in section 2.1, GPs are distance-aware
functions. This enables us to build a distance-aware model that is more appropriate for OOD
detection. Whereas GPs satisfy the distance-aware condition for the last layer predictor, we
are still left with the question on how to maintain distances in the learned representation
correlated to distances in the input layer. This will be subsequently dealt with.

Network smoothness constraints Throughout this paper we will consider the general
term of "smoothness" of a model to mean the degree to which changes in the input have an
effect on the output at a particular layer. The question now shifts into how can we quantify
the smoothness of a network/function? In mathematical analysis a function f : X → Y is
said to be k-smooth if the first k derivatives exist {f′ , f ′′

, · · · , f (k)} and are continuous. We
denote functions which have these properties as being of class Ck. For example, Gaussian
Processes using squared exponential kernels are C∞ since the squared exponential kernel is
infinitely differentiable. However, such a definition and quantification of smoothness wouldn’t
aid us in ensuring the second condition of distance-awareness. For this, we shall use Lipschitz
continuity, which is defined as follows: considering two metric spaces X and Y equipped
with metrics ‖·‖X and ‖·‖Y and f : X → Y is Lipschitz continuous if ∃ real K ≥ 0 such that
∀x, y ∈ X we have ‖f(x), f(y)‖Y ≤ K‖x, y‖X . Intuitively, for Lipschitz functions there is an
upper limit in how much outputs can change with respect to distances in input space. It is
perhaps better to highlight now that Lipschitz functions represent a global property. There
are also locally Lipschitz continuous functions which respect the aforementioned condition
just in a neighbourhood of x, respectively Br(x) = {y ∈ X : ‖x, y‖X≤ r}. Lastly, bi-Lipschitz
continuity is defined as 1

K ‖x, y‖X≥ ‖f(x), f(y)‖Y ≤ K‖x, y‖X , which is a property that
avoids learning trivially smooth functions and maintains useful information (Rosca et al.,
2020). With this in mind, recent work (Liu et al., 2020; van Amersfoort et al., 2021) have
enforced the bi-Lipschitz property on feature extractors, thereby ensuring strong correlation
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between distances between data points in input space, respectively in the representation
learning layer.

1.4 Contributions

This work makes the following main contributions:

• We introduce a Bayesian layer that can act as a drop-in replacement for standard
convolutional layers. Operating on stochastic layers with Gaussian distributions, we
upper bound the convolved affine operators in Wasserstein-2 space, thus ensuring
Lipschitz continuity. To introduce non-linearities, we apply DistGP element-wise on the
output of the constrained affine operator, thereby obtaining non-parametric “activation
functions” which ensure adequate quantification of distributional uncertainty at each
layer.

• We derive theoretical requirements for the model to not suffer from feature collapse,
with additional empirical results to support the theory.

• We demonstrate that a GP-based convolutional architecture can achieve competitive
results in segmentation tasks in comparison to a U-Net.

• We show improved OOD detection results on both general OOD tasks and on medical
images compared to previous OOD approaches such as reconstruction-based models.

2. Background

In this section we provide a brief review of the theoretical toolkit required for the remainder
of the paper. We commence by laying out foundational material on GPs, followed by
an introduction to attempts to sparsify GPs. Subsequently, we introduce an uncertainty
disentanglement framework for sparse Gaussian Processes. We briefly define Wasserstein-2
distances and show how they can be used to define kernels operating on Gaussian distributions.
Lastly, we introduce recent re-formulations of deep GPs through the lens of OOD detection.

2.1 Primer on Gaussian Processes

A Gaussian Process can be seen as a generalization of multivariate Gaussian random variables
to infinite sets. We define this statement in more detail now. We consider f(x) to be a
stochastic field, with x ∈ R

d and we definem(x) = E [f(x)] and C(xi, xj) = Cov [f(xi), f(xj)].
We denote a Gaussian Process (GP) f(x) as:

f(x) ∼ GP (m(x), C (xi, xj)) (8)

The covariance function have the condition to generate non-negative-definite covariance
matrices, more specifically they have to satisfy:

∑

i,j aiajC (xi, xj) ≥ 0 for any finite
set {x1, · · · , xn} and any real valued coefficients {a1, · · · , an}. Throughout this paper
we will only consider second-order stationary processes which have constant means and
Cov [f(xi), f(xj)] = C (‖xi − xj‖). We can see that such covariance functions are invariant
to translations.
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Squared exponential/radial basis function kernel defines a general class of stationary
covariance functions:

kSE(xi, xj) = σ2 exp

[
D∑

d=1

−(xi,d − xj,d)
2

l2d

]

(9)

, where we have written its definition in the anisotropic case. The emphasis on the domain
will make more sense in subsequent subsections where we will introduce kernels operating
on Gaussian measures. Intuitively, the lengthscale values {l21, · · · , l2D} represent the strength
along a particular dimension of input space by which successive values are strongly correlated
with correlation invariably decreasing as the distance between points increases. Such a
covariance function has the property of Automatic Relevance Determination (ARD) (Neal,
2012). Lastly, the kernel variance σ2 controls the variance of the process, more specifically
the amplitude of function samples.

A GP has the following joint distribution over finite subsets X1 ∈ X with function values
f(X1) ∈ Y. Analogously for X2, with their union being denoted as x = {x1, · · · , xn}.

(

f(x1)

f(x2)

)

= N
[(

m(x1)

m(x2)

)

,

(

k(x1, x1), k(x1, x2)

k(x2, x1), k(x2, x2)

)]

(10)

The following observation model is used:

p(y|f, x) =
N∏

i=1

p(yn|f(xn)) (11)

, where given a supervised learning scenario, the dataset D = {xi, yi}i=1,···,n can be shorthand
denoted as D = {x, y}. In the case of probabilistic regression, we make the assumption that
the noise is additive, independent and Gaussian, such that the latent function f(x) and the
observed noisy outputs y are defined by the following equation:

yi = f(xi) + εi, where εi ∼ N
(
0, σ2noise

)
(12)

To train a GP for regression tasks, one performs Marginal Likelihood Maximization of
Type 2 over the following equation:

p(y) = N
(
y | m,Kff + σ2noiseIn

)
(13)

∝ − (y −m)>
(
Kff + σ2noiseIn

)−1
(y −m)− log | Kff + σ2noiseIn | (14)

by treating the kernel hyperparameters as point-mass.
We are interested in finding the posterior p (f(x∗) | y) since the goal is to predict for

unseen data points x∗ which are different than the training set. We know that the joint prior
over training set observations and testing set latent functions is given by:

(

y

f(x∗)

)

= N
[(

m(x)

m(x∗)

)

,

(

k(x, x) + σ2noiseIn k(x, x∗)

k(x∗, x) k(x∗, x∗)

)]

(15)
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Now we can simply apply the conditional rule for multivariate Gaussians to obtain:

p (f(x∗) | y) = N (f(x∗ | m(x∗) +Kf∗f

[
Kff + σ2noiseIn

]−1
[y −m(x)] , (16)

Kf∗f∗ −Kf∗f

[
Kff + σ2noiseIn

]−1
Kff∗)

An illustration of this predictive distribution is given in Figure 2.

GP predictive variance as distributional uncertainty. GPs are clearly distance-aware
provided we use a translation-invariant kernel. The summary statistics (see definition 1)
for an unseen point is given by u(x∗) = Kf∗f∗ − Kf∗fK

−1
ff Kff∗ , which is monotonically

increasing as a function of distance (see Figure 2). Throughout this paper, we will use the
non-parametric variance of sparse variants of GPs as a proxy for distributional uncertainty,
which will be used to assess if inputs are in or outside the distribution.

Figure 2: Left : GP prior samples using radial basis function kernel, which ensures a
smooth function space hypothesis space; Right : GP samples conditioned on observations
using radial basis function kernel. Predictive variance increases as input is further away from
observations.

The usage of GP in real-world datasets is hindered by matrix inversion operations which
have O(n3) time, O(n2) memory for training, where n is the number of data points in the
training set. In the next subsection we will see how to avert having to incur these expensive
computational budgets.

2.2 Sparse Variational Gaussian Processes

In this subsection we succinctly review commonly used probabilistic sparse approximations for
Gaussian process regression. Quinonero-Candela and Rasmussen (2005) provides a unifying
view of sparse approximations by placing each method into a common framework of analyzing
their posterior and their effective prior, which will be shortly defined.
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One way to avert the computationally expensive operators associated to the Kff matrix
is to modify the joint prior over p(f, f∗) so that the respective terms depend on a matrix of
lower rank, where the joint prior is defined as:

(

f(x)

f(x∗)

)

= N
[(

m(x)

m(x∗)

)

,

(

k(x, x), k(x, x∗)

k(x∗, x), k(x∗, x∗)

)]

(17)

We introduce an additional set of M latent variables U = [U1, · · · , Um] ∈ Y with associated
input locations Z = [Z1, · · · , Zm] ∈ X. Throughout this paper, the former will be entitled
inducing point values, respectively the latter inducing point locations.

Due to the consistency property of Gaussian Processes (i.e., for probabilistic model as
defined in equation (10) we have p (f(x1)) =

∫
p (f(x)) df(x2), which ensures that if we

marginalize a subset of elements, the remainder will remain unchanged.), one can marginalize
out U to recover the initial joint prior over p(f, f∗):

p(f, f∗) =

∫

p(f, f∗, U)dU =

∫

p(f, f∗ | U)p(U) dU (18)

, where p(U) = N (U | 0,Kuu) and Kuu is the kernel covariance matrix evaluated at Z.
All sparse approximations to GPs originate from the following approximation:

p(f, f∗) ≈ q(f, f∗) =

∫

q(f∗ | U)q(f | U)p(U)dU (19)

which translates into a conditional independency between training and testing latent variables
given U . Intuitively, the name "inducing points" for {Z,U} was given for this precise property,
that U induces the values for the training and testing set.

Titsias (2009) introduced the first variational lower bound comprising a probabilistic
regressiom model over inducing points. More specifically, the authors applied variational
inference in an augmented probability space that comprises training set latent function values
F alongside inducing point latent function values U , more specifically using the following
generative process in the case of a regression task:

p (U) = N (U | 0,Kuu;Z) (20)

p (F | U) = N
(
F | KfuK

−1
uu U,Kff −Qff ;Z,X

)
(21)

p (y | F ) = N
(
y | F, σ2noise

)
(22)

, where Qff = KfuK
−1
uuKuf . We explicitly denoted the dependence of either Z or X, however

for decluttering reasons these notations will be dropped unless its not evident on what certain
distributions depend on.

In terms of doing exact inference in this new model, respectively computing the posterior
p(f |y) and the marginal likelihood p(y), it remains unchanged even with the augmentation of
the probability space by U as we can marginalize p(F ) =

∫
p(F,U)dU due to the marginal-

ization properties of Gaussian processes. Succintely, p(F ) is not changed by modifying
the values of U , even though p(F |U) and p(U) do indeed change. This translates into the
fundamental difference between variational parameters U and hyperparameters of the model
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{σ2noise, σ2, l21, · · · , l2D}, whereby the introduction of more variational parameters does not
change the fundamental definition of the model before probability space augmentation.

Stochastic Variational Inference (SVI) (Hoffman et al., 2013) enables the application
of VI for extremely large datasets, by virtue of performing inference over a set of global
variables, which induce a factorisation in the observations and latent variables, such as in
the Bayesian formulation of Neural Networks with distributions (implicit or explicit) over
matrix weights. GP do no exhibit these properties, but by virtue of the approximate prior
over testing and training latent functions for SGP approximations with inducing points U ,
which we remind here:

p(f, f∗) ≈ q(f, f∗) =

∫

p(f | U)p(f∗ | U)p(U) dU (23)

this translates into a fully factorized model with respect to observations at training and
testing time, conditioned on the global variables U .

Our goal is to approximate the true posterior distribution p(F,U | y) = p(F | U, Y )p(U |
Y ) by introducing a variational distribution q(F,U) and minimizing the Kullback-Leibler
divergence:

KL [q(F,U)‖p(F,U | y)] =
∫

q(F,U) log
q(F,U)

p(F,U | y) dF dU (24)

, where the approximate posterior factorized as q(F,U) = p(F | U)q(U) and q(U) is an
unconstrained variational distribution over U . Following the standard VI framework we need
to maximize the following variational lower bound on the log marginal likelihood:

log p(y) ≥
∫

p(F | U)q(U) log
p(y | F )p(F | U)p(U)

p(F | U)p(U)
dF dU (25)

≥
∫

q(U)

[∫

log p(Y | F )p(F | U) dF + log
p(U)

q(U)

]

dU (26)

We can now solve for the integral over F :
∫

log p(y|F )p(F |U) dF = Ep(F |U)

[

−n
2
log(2πσ2noise)−

1

2σ2noise
Tr
[

yy> − 2yF> + FF>
]]

(27)

= −n
2
log(2πσ2noise)−

1

2σ2noise
Tr[yy> − 2y

(
KfuK

−1
uu U

)>
+ (28)

(
KfuK

−1
uu U

) (
KfuK

−1
uu U

)>
+Kff −Qff ]

= logN
(
y|KfuK

−1
uu U, σ

2
noiseIn

)
− 1

2σ2noise
Tr [Kff −Qff ] (29)

We can now rewrite our variational lower bound as follows:

log p(y) ≥
∫

q(U) log
N
(
y | KfuK

−1
uu U, σ

2
noiseIn

)
p(U)

q(U)
dU − 1

2σ2noise
Tr [Kff −Qff ] (30)

The variational posterior is explicit in this case, respectively q(F,U) = p(F | U ;X,Z)q(U),
where q(U) = N (U | mU , SU ). Here, mU and SU are free variational parameters. Due to the

12
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Gaussian nature of both terms we can marginalize U to arrive at q(F ) =
∫
p(F | U)q(U) =

N (F | Ũ(x), Σ̃(x)), where:

Ũ(x) = KfuK
−1
uumU (31)

Σ̃(x) = Kff −KfuK
−1
uu [Kuu − SU ]K

−1
uuKuf (32)

The lower bound can be re-expressed as follows:

log p(y) ≥
∫

q(U) logNy

(
KfuK

−1
uu U, σ

2
noiseIn

)
dU−KL [q(U)‖p(U)]− 1

2σ2noise
Tr [Kff −Qff ]

(33)
We proceed to integrate out U , arriving at the following lower bound:

LSV GP = N
(
y | KfuK

−1
uumU , σ

2
noiseIn

)
− 1

2σ2noise
Tr
[
KfuK

−1
uu SUK

−1
uuKuf

]
(34)

− 1

2σ2noise
Tr [Kff −Qff ]−KL [q(U)‖p(U)]

, where we can easily see that the last equation is factorized with respect to individual obser-
vations. This lower variational bound will be denoted as the sparse variational GP (SVGP).
This bound is maximized with respect to variational parameters U and hyperparameters of
the model {Z, σ2noise, σ2, l21, · · · , l2D}. An illustration of SVGP trained on the “banana” dataset
is given in Figure 3, showing similar behaviour to a GP only using a fraction of training set
to obtain similar predictive distribution at testing time.

(a) SVGP (b) GP

Figure 3: Left: Predictive mean and variance of SVGP. Inducing points (teal stars) are
tasked to compress the information present in the entire training set such that predictive
equations conditioned on them are similar to ones conditioned on entire training set; Right:
Predictive mean and variance of GP. Not all training points are crucial in devising the
decision boundary.

2.3 Uncertainty decomposition in SVGP through evidential learning lens

In subsection 1.2 we have introduced the rationale behind the uncertainty decomposition
framework introduced in Malinin and Gales (2018). We now expand on this topic on how to
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separate uncertainties in deep evidential learning models (Amini et al., 2019) and make an
analogy to how uncertainties are decomposed in SVGP.

For multi-class classification tasks, evidential learning directly parametrizes predictive
distributions over the probability simplex. Hence, in comparison to Bayesian Deep Learning
or Deep Ensembles it averts parametrizing the logit space, subsequently feeding it through a
softmax function. Dirichlet distributions provide an obvious choice for defining a distribution
over the K − 1 dimensional probability simplex, having the following p.d.f.: Dir (µ, α) =

1
β(α)

K∏

c=1
µαc−1
c , where β(α) =

K
∏

c=1
Γ(αc)

Γ(α0)
and α0 =

K∑

c=1
αc with αc ≥ 0. α0 is called the precision,

being similar to the precision of a Gaussian distribution, where larger α0 will indicate a
sharper distribution.

Dirichlet networks involve having a NN predict the concentration parameters of the
Dirichlet distribution α = fθ(x), where predictions are made as follows: ỹ = argmax

c
{αc

α0
}Kc=1.

We remind ourselves the uncertainty decomposition framework laid out in subsection 1.2:

I[y, µ|x∗,D]
︸ ︷︷ ︸

Distributional Uncertainty

= H[Ep(µ|D)p(y|x∗, µ)]
︸ ︷︷ ︸

Total Uncertainty

−Ep(µ|D)[H[P (y|x∗, µ)]]
︸ ︷︷ ︸

Aleatoric Uncertainty

(35)

In the case of Dirichlet networks these uncertainty measures have analytic formulas:

Ep(µ|D)[H[P (y|x∗, µ)]] = −
K∑

c=1

αc

α0
[ψ(αc + 1)− ψ(α0 + 1)] (36)

I[y, µ|x∗,D] = −
K∑

c=1

αc

α0

[

log
αc

α0
− ψ(αc + 1) + ψ(α0 + 1)

]

(37)

, where ψ is the digamma function. Epistemic uncertainty quantifies the spread in the
Dirichlet distribution, hence α0 can be used to measure it (Charpentier et al., 2021).

Exact inference is not tractable in GP on classification tasks due to the non-conjugacy
between the GP prior and the non-Gaussian likelihood (Categorical or Bernoulli). Therefore,
approximation are required such as the Laplace approximation (Williams and Barber, 1998),
Expectation Propagation (Minka, 2013) or VI (Hensman et al., 2015). Milios et al. (2018)
have proposed a method that circumvents these approximate inference techniques by re-
branding the classification problem into a regression one, for which exact inference is possible.
We commence to briefly lay out the Dirichlet-based GP Classification algorithm.

We consider the probability simplex π = [π1, · · · , πK ] ∼ Dir(α). We can transform a
multi-class classification task into a multi regression scenario where if yc = 1 in a one-hot-
encoding, then we can assign αc = 1 + αε, respectively αc = αε for 0 ≤ αε << 1. The model
has the following generative process:

π ∼ Dir(α) (38)

p(y | α) = Cat(π) (39)

To sample from the Dirichlet distribution we use the following routine: πc = xc
K
∑

k=1

xk

with

xc ∼ Γ(αc, 1) following the Gamma distribution. From this sampling procedure, we can
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see that the generative process translates to independent Gamma likelihoods for each class.
Intuitively, at this point in the derivation we need a GP to produce xc ≥ 0, since Gamma
distributions are only defined on R

+. Since the marginal GP over a subset of data is governed
by a multivariate normal it will not satisfy this constraint. To obtain GP sampled functions
that respect this constraints, we can use an exp function to transform it. With this in mind,

we know that x ∼ log-normal
(
x | µ, σ2

) d
= exp

(
N
(
x | µ, σ2

))
, with E [x] = exp

(

µ+ σ2

2

)

and V [x] =
[
expσ2 − 1

]
exp

(
2µ+ σ2

)
. Hence, we can approximate xc ∼ γ(αc, 1) with

x̃c ∼ log-normal
(

µ̃c, σ̃2c

)

. To ensure a good approximation, the authors in Milios et al.

(2018) propose using moment matching:

E [xc] = αc = exp

(

µ̃c,
σ̃2c
2

)

= E [x̃c] (40)

V [xc] = αc =
[

exp σ̃2c − 1
]

exp
[

2µ̃c + σ̃2c

]

= V [x̃c] (41)

with equality if µ̃c = logαc− σ̃2
c

2 and σ̃2c = log
(

1
αc

+ 1
)

. We can re-express this approximation

by taking a natural logarithm, obtaining log x̃c ∼ N
(

µ̃c, σ̃2c

)

. This translates into a

heteroskedastic regression model µ̃c = fc +N
(

0, σ̃2c

)

, where fc ∼ GP (0,Kff ). Hence, one

can now apply the standard inference scheme for full GP or we can sparsify the model and
apply the SVGP framework. At testing time, the expectation of class probabilities will be:

E [πi,c] =

∫
exp fi,c

C∑

k=1

exp fi,k

q(fi,c) dfi,c (42)

which can be approximated via Monte Carlo integration. In the sparse scenario, q(fi,c) ∼
N
(

Ũ(xi), Σ̃(xi)
)

similar to the predictive equations introduced in subsection 2.2. In con-

clusion, if using Dirichlet-based GP for Classification one can obtain similar estimates of
aleatoric and distributional uncertainty in the space of the probability simplex as in equations
(36) and (37) specific to Dirichlet Networks. However, for the purposes of this paper we
intend to measure distributional uncertainty in the space of logits, as the formulas are simpler
to compute and more intuitive from the viewpoint of distance-awareness.

As we have previously stated, GPs are distance-aware. Thus, they can reliably notice
departures from the training set manifold. For SVGP we decompose the model uncertainty
into two components:

h(·) = N (h | 0,Kff −KfuK
−1
uuKuf ) (43)

g(·) = N (g | KfuK
−1
uumU ,KfuK

−1
uu SUK

−1
uuKuf ) (44)

The h(·) variance captures the shift from within to outside the data manifold and will
be denoted as distributional uncertainty. The variance g(·) is termed here as within-data
uncertainty and encapsulates uncertainty present inside the data manifold. A visual depiction
of the two is provided in Figure 14 (bottom). To capture the overall uncertainty in h(·),
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thereby also capturing the spread of samples from it, we can calculate it’s differential entropy
as:

h(h) =
n

2
log 2π +

1

2
log | Kff −KfuK

−1
uuKuf |+ 1

2
(45)

In practice we only use the diagonal terms of the Schur complement, hence the log determinant
term will considerably simplify. Intuitively, if terms on the diagonal of the Schur complement
have higher values, so will the distributional differential entropy. This OOD measure in logit
space will be used throughout the rest of the paper.

2.4 Deep Gaussian Processes fail in propagating distributional uncertainty

Deep Gaussian Processes (DGP) were first introduced in Damianou and Lawrence (2013),
as a multi-layered hierarchical formulation of GPs. Composition of processes has retains
theoretical properties of underlying stochastic process (such as Kolmogorov extension theorem)
while also ensuring a more diverse hypothesis space of process priors, or at least in theory as
we shall later see.

We can view the DGP as a composition of functions, keeping in mind that this is only
one way of defining this class of probabilistic models (Dunlop et al., 2018):

fL(x) = fL ◦ ... ◦ f1(x) (46)

with fl = GP (ml, kl (·, ·)). Assuming a likelihood function we can write the joint prior as:

p
(
y, {fl}Ll=1;X

)
= p(y | fL)
︸ ︷︷ ︸

likelihood

L∏

l=1

p(fl | fl−1)

︸ ︷︷ ︸

prior

(47)

with p (fl | fl−1) ∼ GP (ml(fl−1), kl (fl−1, fl−1)), where in the case we choose squared expo-
nential kernels we have the following formula for the l-th layer:

kSE(fl,i, fl,j)l = σ2l exp

[
Dl∑

d=1

−(fl,i,d − fl,j,d)
2

l2l,d

]

where Dl represents the number of dimensions of Fl and we introduce layer specific kernel
hyperparameters {σ2l , l2l,1, · · · , l2l,Dl

}.
Analytically integrating this Bayesian hierarchical model is intractable as it requires

integrating Gaussians which are present in a non-linear way. Moreover, to enable faster
inference over our model we can augment each layer l with Ml inducing points’ locations
Zl−1, respectively inducing points’ values Ul resulting in the following augmented joint prior:

p
(

y, {fl}Ll=1, {Ul}Ll=1;X, {Zl}L−1
l=0

)

= p(y|fL)
︸ ︷︷ ︸

likelihood

L∏

l=1

p(fl|fl−1, Ul;Zl−1)p(Ul)

︸ ︷︷ ︸

prior

(48)

, where p(fl | fl−1, Ul;Zl−1) = N
(
fl | ml(fl−1) +KfuK

−1
uu

(
Ul −ml(Zl−1),Kff −KfuK

−1
uuKuf

))
.

To perform SVI we introduce a factorised variational approximate posterior q
(
{Ul}Ll=1

)
=
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L∏

l=1

N (Ul | mUl
, SUl

). Using a similar derivation as in the uncollapsed evidence lower bound

for SVGPs, we can arrive at our ELBO for DGPs:

LDGP = Eq({fl}
L
l=1)

[log p (y | fL)]−
L∑

l=1

KL [q(Ul)‖p(Ul)] (49)

where q
(
{fl}Ll=1

)
=

L∏

l=1

q (fl | fl−1) and q (fl | fl−1) = N
(

fl | Ũl(fl−1), Σ̃l(fl−1)
)

, respec-

tively:

Ũl(fl−1) = ml(fl−1) +KfuK
−1
uu [mUl

−ml(Zl−1)] (50)

Σ̃l(fl−1) = Kff −KfuK
−1
uu [Kuu − SUl

]K−1
uuKuf (51)

This composition of functions is approximated via Monte Carlo integration as introduced
in the doubly stochastic variational inference framework for training DGPs (Salimbeni and
Deisenroth, 2017).

In Popescu et al. (2020) the authors argued that total uncertainty in the hidden layers of
a DGP will be higher for OOD data points in comparison to in-distribution data points only
under a set of conditions. We briefly lay out the details here.

Without loss of generality for deeper architectures, we can consider the case of a DGP
with two layers and zero mean functions which has the following posterior predictive equation:

q(F2)(x) =

∫

p(F2|F1)q(F1(x))dF1 (52)

, where q(F1(x)) = Nf1

(

Ũ1(x), Σ̃1(x)
)

. This is similar to the case of approximating GPs

with uncertain inputs, in this case Multivariate Normals. In Girard (2004) they lay out a
framework for obtaining Gaussian approxiations of GPs with uncertain inputs (in our case
the uncertainty stems from the previous layer of the DGP), which when adapted to our case
we obtain the following approximate moments for q(F2)(x):

m(F2) = Ũ2(Ũ1(x)) (53)

v(F2) = Σ̃2(Ũ1(x)) + Σ̃1(x)

[

1

2

∂2Σ̃2(F1)

∂2F1

∣
∣
∣
F1=Ũ1(x)

+

(

∂Ũ2(F1)

∂F1

)2∣
∣
∣
F1=Ũ1(x)

]

(54)

In Popescu et al. (2020) they propose a realistic scenario which occurs frequently in
practice, whereby the inducing points Zl of particular layer are spread out such as to
cover the entire spectrum of possible samples from the previous layer Fl−1. More precisely,
we can consider an OOD data point xood in input space such that Σ̃1(xood) = σ2 and
Ũ1(xood) = 0, respectively an in-distribution point xin−d such that Σ̃1(xin−d) = Vin ≤ σ2

and Ũ1(xin−d) =Min. We also assume that Z2 are equidistantly placed between [−3σ, 3σ].
The authors go on to show that the total variance in the second layer of xood will be higher

than xin−d if the following holds

(

∂Ũ2(F1)
∂F1

)2
∣

∣

∣

∣

F1=Min
(

∂Ũ2(F1)
∂F1

)2
∣

∣

∣

∣

F1=0

≤ σ2

Vin
. One can rapidly infer that this
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inequality holds if the absolute first order derivative of the parametric component of the
SVGP around 0 is higher compared to any other value which might be evaluated at. This
observation is to be made in conjunction with the fact that σ2

Vin
≥ 1.0, since the total variance

of in-distribution points will be reduced compared to the prior variance.

Figure 4: Layer-wise decomposition of uncertainty into parametric/epistemic and non-
parametric/distributional for a zero mean function DGP, alongside first order derivatives.
OOD points in input space xout get mapped on average to 0 in f1(xout), which has a high
absolute first order derivative causing the parametric uncertainty in f2 to be high for xout.

To gain some intuition as to what occurs in practice, we can consider a 2 layer DGP
trained on a toy regression task, where we decompose the resulting posterior SVGP predictive
equation into its parametric and non-parametric components for each layer with respect to
input space (first two rows of Figure 4). To investigate whether our trained DGP respects the
above inequality for propagating higher total uncertainty for OOD data points in comparison
to in-distribution data points, we also need to predict what are the first-order derivatives
with respect to the input stemming from the previous layer (last row of Figure 4). We
encourage the reader to inspect McHutchon (2013) for an in-depth introduction to first order
derivative of GPs. We can notice that the total variance is indeed higher for OOD data
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points in the final layer, as this was brought upon by the high absolute value of the first
order derivative around 0 in the second layer (OOD data points in the first hidden layer will
have an expected value of 0). Intuitively, OOD data points in input space will have higher
total uncertainty in output space due to the higher diversity of function values in the second
layer. The diversity is caused by the high non-parametric uncertainty in the first hidden
layer. Conversely, we can see that for in-distribution points the total variance in the first
hidden layer is relatively small, hence the sampling will be close to deterministic, implicitly
meaning that it will access only a very restricted set of function values in the second layer
thus causing a relatively small total variance. Lastly, we remind ourselves that for GPs we
can consider the non-parametric/distributional uncertainty as a proxy for OOD detection.
From Figure 4 we can see that distributional uncertainty collapses in the second layer for
any value in input space. This implies that DGPs are not distance-aware.

Figure 5: Layer-wise decomposition of uncertainty into parametric/epistemic and non-
parametric/distributional for a zero mean function DGP. Outlier points are sampled close to
inliers points in f1, thereby causing their collapse of non-parametric variance since inducing
points in f1 are close to both outlier and inlier samples.

To understand what is causing this pathology, we take a simple case study of a DGP
(zero mean function) with two hidden layers trained on a toy regression dataset (Figure 5).
Taking a clear outlier in input space, say the data point situated at -7.5, it gets correctly
identified as an outlier in the mapping from input space to hidden layer space as given by
its distributional variance. However, its outlier property dissipates in the next layer after
sampling, as it gets mapped to regions where the next GP assigns inducing point locations.
This is due to points inside the data manifold getting confidently mapped between -2.0 and
1.0 in hidden layer space. Consequently, what was initially correctly identified as an outlier
will now have its final distributional uncertainty close to zero. Adding further layers, will
only compound this pathology.
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2.5 Wasserstein-2 kernels for probability measures

As we have seen in the previous subsection, analytically integrating out the prior of a DGP
is intractable in the case of using kernels operating in Euclidean space. However, the hidden
layers of a DGP are intrinsically defined over probability measures (Gaussian in this case).
This leads us to ponder whether we can obtain an analytically tractable formulation of DGPs
by using kernels operating on probability measures, thereby we need a metric on probability
measures which we subsequently introduce.

The Wasserstein space on R can be defined as the set W2(R) of probability measures on R

with a finite moment of order two. We denote by Π(µ, ν) the set of all probability measures
Π over the product set R × R with marginals µ and ν, which are probability measures in
W2(R). The transportation cost between two measures µ and ν is defined as:

T2(µ, ν) = inf
π∈Π(µ,ν)

∫

[x− y]2dπ(x, y) (55)

This transportation cost allows us to endow the set W2(R) with a metric by defining the
quadratic Wasserstein distance between µ and ν as:

W2(µ, ν) = T2(µ, ν)
1/2 (56)

Theorem 2 (Theorem IV.1. in Bachoc et al. (2017)) Let kW :W2(R)×W2(R) → R

be the Wasserstein-2 RBF kernel defined as following:

kW2(µ, ν) = σ2 exp
−W 2

2 (µ, ν)

l2
(57)

then kW2(µ, ν) is a positive definite kernel for any µ, ν ∈W2(R), respectively σ2 is the kernel
variance, l2 being the lengthscale.

A detailed proof of this theorem can be found in Bachoc et al. (2017).
Multiplication of positive definite kernels results again in a positive definite kernel, hence

we arrive at the automatic relevance determination kernel based on Wasserstein-2 distances:

kW2([µd]
D
d=1, [νd]

D
d=1) = σ2 exp

D∑

d=1

−W 2
2 (µd, νd)

l2d
(58)

Wasserstein-2 Distance between Gaussian distributions. Gaussian measures fulfill
the condition of finite second order moment, thereby being a clear example of probability
measures for which we can compute Wasserstein metrics. The Wasserstein-2 distance between
two multivariate Gaussian distributions N (m1,Σ1) and N (m2,Σ2), which have associated
Gaussian measures and implicitly the Wasserstein metric is well defined for them, has

been shown to have the following form ‖ m1−m2 ‖22 +Tr
[

Σ1 + Σ2−2
(

Σ
1/2
1 Σ2Σ

1/2
1

)1/2]

(Dowson and Landau, 1982), which in the case of univariate Gaussians simplifies to |m1 −
m2|2+|√Σ1−

√
Σ2|2. This last formulation will be used throughout this paper.
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2.6 Distributional Deep Gaussian Processes & OOD detection

In the previous subsection we have seen that DGPs can easily fail in propagating distributional
uncertainty forward. We now focus on the variant of DGPs introduced in Popescu et al. (2020)
that was proven both theoretically and empirically to propagate distributional uncertainty
throughout the hierarchy, thus ensuring distance-awareness properties. The insights gained
from this subsection will constitute the departure point for our proposed model in the next
section.

Distributional Gaussian Processes (DistGP) were first introduced in (Bachoc et al., 2017)
to describe a shallow GP that operates on probability measures using a Wasserstein-2 based
kernel as defined in equation (58).

We introduce the generative process of Distributional Deep Gaussian Processes (DDGP)
for 2 layers:

p(F1) ∼ N (0,Kff ) (59)

F sth
1 = m(F1) +

√

v(F1)ε, ε ∼ N (0, In) (60)

F det
1 = N (m(F1), diag [v(F1)]) (61)

p(F2) ∼ N
(

0, khybrid

(

{F sth
1 , F det

1 }, {F sth
1 , F det

1 }
))

(62)

, where the hybrid kernel is defined as follows:

khybrid (µi, µj) = kE(xi, xj) exp
D∑

d=1

−W 2
2 (µi,d, µj,d)

l2d
(63)

, where we denoted µi = N (m(F1(xi)), σ
2
1); µj = N (m(F1(xj)), σ

2
1) as the first two moments

which are obtained through the F det
1 operation in the generative process. Intuitively this

generative process implies keeping track of a stochastic, respectively deterministic component
of the same SVGP at any given hidden layer, while the first layered is governed by a standard
SVGP operating on Euclidean data. It is worthy to point out that for this probabilistic
construction, the inducing points {Zl}Ll=1 have to reside in the space of multivariate Gaussians,
hence Zl ∼ N (Zl | µZl

,ΣZl
). The first two moments are treated as hyperparameters that

are optimized during training.
We can consider an OOD data point xood in input space such that Σ̃1(xood) = σ2 and

Ũ1(xood) = 0, respectively an in-distribution point xin−d such that Σ̃1(xin−d) = Vin ≤ σ2

and Ũ1(xin−d) =Min. We also assume that Z2 are equidistantly placed between [−3σ, 3σ].
The authors go on to show that the total variance in the second layer of xood will be higher
than xin−d if the following holds σ2 >> Z2,var and Vin ≈ Z2,var. To better understand this
behaviour, we can consider a two-layered DGPs and DDGPs, we assume an in-distribution
point to have low total variance in hidden layer F1, respectively an OOD point to have high
total variance. In the DGP case, upon sampling from q(F1(xin−d)) and q(F1(xood)) we can
end up with samples which are equally distance with respect to inducing points’ location Z1.
If this occurs, then non-parametric variance (proxy for distributional variance) will be equal
for xin−d and xood in F2. Hence, what was initially flagged as OOD in the first hidden layer
will be considered as in-distribution by the second hidden layer. onversely, in the DDGP
case and under the assumption that the variance of distributional inducing points’ locations
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Figure 6: Conceptual difference between euclidean and hybrid kernel.

Z2 is almost equal in distribution to the total variance of in-distribution points in F2, the
Wasserstein-2 component of the hybrid kernel will notice that there is a higher distance
between the now distributional inducing point location and xood, as opposed of former with
xin−d. Then, the non-parametric variance of xood will be higher than that of xin−d. A visual
depiction of this case study is illustrated in Figure 6.

3. Distributional GP Layers

Shift towards single-pass uncertainty quantification Early methods for uncertainty
quantification in Bayesian deep learning (BDL) have focused on estimating the variance
of sample from difference sub-models, such as in using dropout (Gal and Ghahramani,
2016b), deep ensembles (Lakshminarayanan et al., 2017) or in sampling posterior network
weights from a hypernetwork (Pawlowski et al., 2017). This results in slow uncertainty
estimation at testing time, which can be critical in high-risk domains where speed is of
essence (e.g., self-driving cars). Recent work in OOD detection has focused on estimating
proxies for distributional uncertainty in a single-pass, such as in bi-Lipschitz regularized
feature extractors for GP (van Amersfoort et al., 2021; Liu et al., 2020) or in parametrizing
second-order uncertainty via neural networks within the framework of evidential learning
(Charpentier et al., 2020; Amini et al., 2019). With this shift towards single-pass uncertainty
quantification, DDGPs and the hybrid kernel introduced in subsection 2.6 are no longer
appropriate since they involved sampling the features at each hidden layer. In next subsection
we detail a deterministic variant which still preserves correlations between data points in the
hidden layers.

Integrating GPs in convolutional architectures GP for image classification has gar-
nered interest in the past years, with hybrid approaches, whereby a deep neural network
embedding mechanism is trained end-to-end with GPs as the classification layer, being the
first attempt to unify the two approaches (Wilson et al., 2016; Bradshaw et al., 2017). Garriga-
Alonso et al. (2018) provided a conceptual framework by which classic CNN architectures
are translated into the kernel of a shallow GP by exploiting the mathematical properties of
the variance of weights matrices. Van der Wilk et al. (2017) proposed the first convolutional
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kernel, constructed by aggregating patch response functions. Dutordoir et al. (2019) have
attempted to solve the issue with complete spatial invariance of the convolutional kernel by
adding an additional squared exponential kernel between the locations of two patches to
account for spatial location, obtaining improvements in accuracy. To extend this shallow GP
model to accommodate deeper architectures, Blomqvist et al. (2018) have proposed to use
the convolutional GP on top of a succession of feed-forward GP layers which process data in a
convolutional manner akin to standard convolutional layers. However, scaling this framework
to modern convolutional architectures with large number of channels in each hidden layer is
problematic for two reasons. Firstly, this would imply training high-dimensional multi-output
GPs which still represents a research avenue on how to make it more efficient (Bruinsma
et al., 2020). Ignoring correlations between channels would severely diminish the expressivity
of the model. Secondly, the hidden layer GP which process data in a convolutional manner
implies taking inducing points, with a dimensionality which scales linearly with the number of
channels. This would imply optimization over high-dimensional spaces for each hidden layer,
potentially leading to local minima. We will see later on an alternative to this framework
for integrating GP in a convolutional architecture, one that is more amenable to modern
convolutional architectures.

3.1 Deep Wasserstein Kernel Learning

3.1.1 Generative Process

We now write the generative process of this new probabilistic framework coined Deep
Wasserstein Kernel Learning (DWKL) for 2 layers:

p(F1) = N (PCA(F0), diag [Kff ]) (64)

p(F2) = N
[
0, kW2 (p(F1), p(F1))

]
(65)

Due to the introduction of PCA mean functions, data points in the hidden layer are now
correlated. To make this clear, we can explicitly calculate it:

p

(

F2,i

F2,j

)

∼ N
[(

0

0

)

,

(

σ22 exp−
−W 2

2 (µi,µi)
l2

σ22 exp−
−W 2

2 (µi,µj)
l2

σ22 exp−
−W 2

2 (µj ,µi)
l2

σ22 exp−
−W 2

2 (µj ,µj)
l2

)]

(66)

∼ N
[(

0

0

)

,

(

σ22 KW2
i,j

KW2
j,i σ22

)]

(67)

where µi = N
(
PCA(F0,i), σ

2
)

and µj = N
(
PCA(F0,j), σ

2
)
. If the PCA embeddings of

xi and xj are different, then the Wasserstein-2 distance will be different than zero, hence
introducing correlations.

3.1.2 Evidence lower bound

Deep Kernel Learning (DKL) (Wilson et al., 2016) is defined as a shallow GP with the input
encoded by a neural network:

p(Y, FL, UL) = p(Y | FL)
︸ ︷︷ ︸

likelihood

p(FL | UL;ZL−1,Enc(X))p(UL)
︸ ︷︷ ︸

prior

(68)
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,where Enc(X) represents the input passed through a neural network encoder, providing
a deterministic transformation of the data which is then fed into a SVGP operating on
Euclidean data (using equation (9)).

We diverge from this approach by utilising stacked DistGP with Wasserstein-2 kernels as
the encoder network, hence our transformed input given by a Gaussian distribution q(FL−1).
Using the first two moments of the penultimate layer, we introduce a DistGP so as to obtain
the final predictions. The conditional equation for DistGP at arbitrary layer l ≥ 2 is written
as:

p(Fl | Ul;Zl−1, Fl−1) = N (Fl | KW2
fu K

W2
uu

−1U,KW2
ff −QW2

ff ) (69)

, where we have inducing points Zl ∼ N (Zl | µZl
,ΣZl

) and uncertain input Fl−1 ∼
N
(

Fl−1 | ˜Ul−1(Fl−2), ˜Σl−1(Fl−2)
)

. For computational reasons we take both ˜Σl−1(Fl−2)

and ΣZl
to be diagonal matrices. For l = 1 we have q(F1) ∼ N

(

F1 | Ũ1(x), Σ̃1(x)
)

which

are the standard predictive equations for SVGP as given in equations (31) and (32) since the
first layer is governed by a standard SVGP operating on Euclidean data.

The joint density prior of Deep Wasserstein Kernel Learning (DWKL) is given as:

p(Y |F )
︸ ︷︷ ︸

likelihood

p(FL | UL;ZL−1, Enc(X))
L∏

l=1

p(Ul)

︸ ︷︷ ︸

prior

(70)

, where in our case Enc(X) ∼ N
[

ŨL−1(FL−2), Σ̃L−1(FL−2)
]

that acts as the uncertain

input for the final distributional GP. We introduce a factorized posterior between layers
and dimensions q(FL, {Ul}Ll=1) = p(FL|UL;ZL−1)

∏L
l=1 q(Ul), where q(Ul) is taken to be a

multivariate Gaussian with mean mUl
and variance SUl

. This gives the DWKL variational
lower bound:

LDKWL = Eq(FL,{Ul}
L
l=1)

p(Y | FL)−
L∑

l=1

KL [q(Ul)‖p(Ul)] (71)

, where q(FL) = N (ŨL(Enc(X)), Σ̃L(Enc(X))). For 1 ≤ l ≤ L − 1, Fl act as features for
the next kernel as opposed to random variables that need to be integrated out. We provide
pseudo-code of the previously mentioned operations (see Algorithm 1).

3.2 Module Architecture

For ease of notation and graphical representation we describe the case of the input being a
2D image, with no loss of generality. We denote the image’s representation Fl ∈ R

Hl,Wl,Cl

with width Wl, height Hl and Cl channels at the l-th layer of a multi-layer model. F0 is the
image. Consider a square kernel of size kl×kl. We denote with F

[p,kl]
l ∈ R

kl,kl,Cl the p-th
patch of Fl, which is the area of Fl that the kernel covers when overlaid at position p during
convolution (e.g., orange square for a 3×3 kernel in Figure 7). We introduce the convolved

GP0 : F
[p,k0]
0 → N (m, k) with Z0 ∈ R

k0,k0,C0 to be the SGP operating on the Euclidean
space of patches of the input image in a similar fashion to the layers introduced in Blomqvist
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Algorithm 1: Deep Wasserstein Kernel Learning
Input: Euclidean data X = F0

First layer is standard sparse variational GP
Variational Parameters: U1 ∼ N (mU1 , ΣU1)
Inducing Points: Euclidean space Z0

q(F1) = N (F1 | KSE
fu K

SE
uu

−1mU1 ,K
SE
ff −KSE

fu K
SE
uu

−1(KSE
uu − SU1)K

SE
uu

−1KSE
uf

for l = 2 to L do
Hidden layers are distributional sparse variational GP
Variational Parameters: Ul ∼ N (mUl

, SUl
)

Inducing Points: Zl−1 ∼ N (µZl−1
, ΣZl−1

)

Compute KW2
fu : σ2l exp

∑Dl

d=1
−W 2

2 (q(Fl−1[:,d]),Zl−1[:,d])

l2
l,d

Compute KW2
uu : σ2l exp

∑Dl

d=1
−W 2

2 (Zl−1[:,d],Zl−1[:,d])

l2
l,d

q(Fl) = N (Fl | KW2
fu K

W2
uu

−1mUl
,KW2

ff −KW2
fu K

W2
uu

−1
[
KW2

uu − SUl

]
KW2

uu
−1KW2

uf

end for
Maximize ELBO: Eq(FL),{q(Ul}

L
l=1)

p(Y | FL)−
∑L

l=1KL [q(Ul)‖p(Ul)]

Input Space Measure preserving DistGP layer

Stochastic 

Layer

Convolutionally 

Warped Dist-GPs

Convolved GP 

Affine 

operator

DistGP <activation 
function=

Deterministic 

Layer

Post-activation 

Layer

F0

F1

F2
pre

F2
post

H0

k0

H1

w1

c1

w0

k0
k1

k1

Figure 7: Schematic of measure-preserving DistGP layer. Sparse variational GP is convolved
on input data to obtain first hidden layer. Affine operator is convolved on stochastic layer,
propagating both mean and variance to obtain the pre-activation of the second hidden layer.
Distributional GP is applied element-wise to introduce non-linearities and to propagate
distributional uncertainty in the post-activation of the second hidden layer.

et al. (2018). For 1 ≤ l ≤ L we introduce affine operators Al ∈ R
kl,kl,Cl−1,Cl,pre which are

convolved on the previous stochastic layer in the following manner:
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m(F pre
l ) = Conv2D(m(Fl−1), Al) (72)

var(F pre
l ) = Conv2D(var(Fl−1), Al �Al) (73)

, where � represents the Hadamard product. The affine operator is sequentially applied on
the mean, respectively variance components of the previous layer Fl−1 so as to propagate the
Gaussian distribution to the next pre-activation layer F pre

l . To obtain the post-activation

layer, we apply a DistGPl : F
pre,[p,1]
l → N (m, k) in a many-to-one manner on the pre-

activation patches to arrive at F post
l . Figure 7 depicts this new module, entitled “Measure

preserving DistGP” layer with pseudo-code offered in Algorithm 2. In Blomqvist et al.
(2018) the convolved GP is used across the entire hierarchy, thereby inducing points are in
high-dimensional space (k2l ∗ Cl). In our case, the convolutional process is replaced by an
inducing points free affine operator, with inducing points in low-dimensional space (Cl,pre)
for the DistGP activation functions. The affine operator outputs Cl,pre, which is taken to be
higher than the associated output space of DistGP activation functions Cl. Hence, the affine
operator can cheaply expand the channels, in constrast to the layers in Blomqvist et al. (2018)
which would require high-dimensional multi-output GP. We motivate the preservation of
distance in Wasserstein-2 space in the following section. Previous research has highlighted the
importance of having an upper bound on ||h(x1)− h(x2)||h≤ Lupper||x1 − x2||x, as it ensures
a certain degree of robustness towards adversarial examples, since it prevents the hidden
forward mappings from being overly sensitive to the conceptually meaningless perturbations
in input space (Jacobsen et al., 2018; Sokolić et al., 2017; Weng et al., 2018). Conversely,
the lower bound ||h(x1)− h(x2)||h≥ Llower||x1 − x2||x ensures that the forward mappings do
not become invariant to semantically meaningful changes in the input van Amersfoort et al.
(2020).

3.3 Imposing Lipschitz Conditions in Convolutionally Warped DistGP

If a sample is identified as an outlier at certain layer, respectively being flagged with high
variance, in an ideal scenario we would like to preserve that status throughout the remainder
of the network. As the kernels operate in Wasserstein-2 space, the distance of a data point’s
first two moments with respect to inducing points is vital. Hence, we would like our network
to vary smoothly between layers, so that similar objects in previous layers get mapped into
similar spaces in the Wasserstein-2 domain. In this section, we accomplish this by quantifying
the "Lipschitzness" of our "Measure preserving DistGP" layer and by imposing constraints
on the affine operators so that they preserve distances in Wasserstein-2 space.

Proposition 3 For a given DistGP F and a Gaussian distribution µ ∼ N (m1,Σ1) to be the

centre of an annulus B(x) = {ν ∼ N (m2,Σ2) | 0.125 ≤ W2(µ,ν)
l2

≤ 1.0 and choosing any ν
inside the ball we have the following Lipschitz bounds: W2(F (µ), F (ν)) ≤ LW2(µ, ν), where

L = (4σ
2

l )2
[
‖K−1

uum‖22+‖K−1
uu (Kuu − S)K−1

uu ‖2
]

and l, σ2 are the lengthscales and variance
of the kernel.

Proof is given in Appendix A.
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Algorithm 2: Distributional Gaussian Processes Layers

Input: Euclidean data X = F0 ∈ R
H0,W0,C0

First layer is convolved sparse variational GP0 : F
[p,k0]
0 → F

[p]
1

Variational Parameters: U1 ∼ N (mU1 , SU1)
Inducing Points: Euclidean space Z0 ∈ R

k0,k0,C0

q(F1) = N (F1 | KSE
fu K

SE
uu

−1mU1 ,K
SE
ff −KSE

fu K
SE
uu

−1(KSE
uu − SU1)K

SE
uu

−1KSE
uf

for l = 2 to L do
affine operators: Al ∈ R

kl,kl,Cl−1,Cl,pre

m(F pre
l ) = Conv2D(m(Fl−1), Al)

v(F pre
l ) = Conv2D(var(Fl−1), A

2
l )

Hidden layer activation functions are sparse variational GP
DistGPl : F

pre,[p,1]
l → F

post,[p,1]
l

Variational Parameters: Ul ∼ N (mUl
, SUl

)
Inducing Points: Zl−1 ∼ N (µZl−1

, ΣZl−1
)

Compute KW2
fu : σ2l exp

∑Dl

d=1
−W 2

2 (q(Fl−1[:,d]),Zl−1[:,d])

l2
l,d

Compute KW2
uu : σ2l exp

∑Dl

d=1
−W 2

2 (Zl−1[:,d],Zl−1[:,d])

l2
l,d

q(F post
l ) = N (Fl | KW2

fu K
W2
uu

−1mUl
,KW2

ff −KW2
fu K

W2
uu

−1
[
KW2

uu − SUl

]
KW2

uu
−1KW2

uf

end for
Maximize ELBO: Eq(FL),{q(Ul}

L
l=1)

p(Y | FL)−
∑L

l=1KL [q(Ul)‖p(Ul)]

Remark 4 This theoretical result shows that DistGP "activation functions" have Lipschitz
constants with respect to the Wasserstein-2 metric in both output and input domain. This will
ensure that the distance between previously identified outliers and inliers will stay constant.
However, it is worthy to highlight that we can only obtain locally Lipschitz continuous
functions, given that we can only obtain Lipschitz constants for any Gaussian distribution ν
inside the annulus B(x) = {ν ∼ N (m2,Σ2) | 0.125 ≤ W2(µ,ν)

l2
≤ 1. with respect to the centre

of the annulus, µ.

We are now interested in finding Lipschitz constants for the affine operator A that gets
convolved to arrive at the pre-activation stochastic layer.

Proposition 5 We consider the affine operator A ∈ R
C,1 operating in the space of mul-

tivariate Gaussian distributions of size C. Consider two distributions µ ∼ N (m1, σ
2
1) and

ν ∼ N (m2, σ
2
2), which can be thought of as elements of a hidden layer patch, then for

the affine operator function f(µ) = N(m1A, σ
2A2) we have the following Lipschitz bound:

W2 (f(µ), f(ν)) ≤ LW2 (µ, ν), where L =
√
C‖W‖22.

Proof is given in Appendix A.

Remark 6 We denote the l-th layer weight matrix, computing the c-th channel by column
matrix Al,c. We can impose the Lipschitz condition to Eq. 72, 73 by having constrained weight

matrices with elements of the form Al,c =
Al,1

C
1
2

√

∑C
c=1 W

2
l,c

.
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3.4 Feature-collapse in DistGP layers

In this subsection we delve deeper into the properties of DistGP layers from a function-space
view. In light of recent interest into feature collapse van Amersfoort et al. (2020), which is
the pathological phenomenon of having the representation layer collapse to a small finite set
of values, with catastrophic consequences for OOD detection, we investigate what are the
necessary conditions for our proposed network to collapse in feature space. Subsequently, we
investigate if feature collapse is inherently encouraged by our loss function.

We commence by introducing notation conventions. We consider {ul ∈ R
Dl}l=0:L where

Dl is the number of dimensions in the l-th layer of the hierarchy. We consider the following
two functions Ψl : ul−1 → Rml and fl : Rml → ul. To relate this notation to our construction
of a DistGP layer introduced in section 3.2, ml represents the number of dimensions of the
warped GP (warping performed by affine deterministic layer; see dark green arrows in Figure
7). We denote by fl to be the DistGP (mean function included) taking values in the space
of continuous functions C(ul;Rml), which relates to the "activation function" construction
from Figure 7. Then we have the following composition for a given DistGP layer:

ul(x) = fl (Ψl(ul−1)(x)) (74)

One can easily see that DWKL can be recovered by taking Ψl = id, instead of the affine

embedding. The first layer prior p

(

u1(x)

u1(x
∗)

)

is defined as follows:

N
[(

m1(x)

m1(x
∗)

)

,

(

σ21 kE (x, x∗)

kE (x∗, x) σ21

)]

(75)

We now define the prior post-activation layers p

(

ul(x)

ul(x
∗)

)

for l ≥ 2 in the following recursive

manner:

N
[(

ml(x)

ml(x
∗)

)

,

(

σ2l kW2 (µl−1(x), µl−1(x
∗))

kW2 (µl−1(x
∗), µl−1(x)) σ2l

)]

(76)

, where µl (x) = N
(
ml−1(x)Wl, σ

2
l−1W

2
l

)
, where ml+1(·) = m1(·)W1 · · ·Wl and m1(x)W1

signifies having the Principal Component Analysis (PCA) mean function of the first layer
multiplied by W1 and averaged across its dimensions.

Proposition 7 We assume µ0 to be bounded on bounded sets almost-surely. If at each layer

we have satisfied the following inequality D2
l 〈W̃l, W̃l〉 ≤ 1, respectively

[

DL ∗ 〈W̃L, W̃L〉+ σ2
L

2l2
L

]

≤
1, where Dl is the size of the l-th layer and W̃l represents a normalized version of the affine
embedding Wl, we have the following result:

P (‖un(x)− un(x
∗)‖2→ 0) = 1 (77)

The proof of Proposition 3 can be found in Appendix B.
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Remark 8 As we have previously outlined in the above derivation, if at each layer we have sat-

isfied the following inequality Dlml−1Dl−1 < W̃l, W̃l >≤ 1, respectively
[

mlDL−1 ∗ 〈W̃L, W̃L〉+ σ2
L

2l2
L

]

≤
1 then the network collapses to constant values. Intuitively, if the norm of Wl is not large
enough, then it won’t change the Gaussian random field too much. Furthermore, if σ2l is
larger, which translates in increased amplitude of the samples from the Gaussian random field,
then the values will not collapse. As opposed to the hypothetical requirements for DGP Dunlop
et al. (2018), we can immediately notice that for DistGP layers there is no requirement for
the kernel variance and lengthscales from intermediate layers, relying solely on the last layer
hyperparameters. Lastly, we can notice that as the width of the stochastic layers is increased,
alongside warped layers through affine embedding, the conditions are less likely to be satisfied.

3.5 Over-correlation in latent space

Ober et al. (2021) has highlighted a certain pathology in DKL applied to regression problems
in the non-sparse scenario. The authors provide empirical examples of this pathology, whereby
features in the representation learning layer are almost perfectly correlated, which would
correspond to the feature collapse phenomenon as coined in van Amersfoort et al. (2020).
We commence by briefly introducing the main results from that paper and then adapt them
to the sparse scenario, which bears more resemblance to what occurs in practice.

Full GPs are trained via type-II maximum likelihood:

log p(y) = logN
(
y | 0,Kff + σ2noiseIn

)
(78)

∝ − 1

2
log | Kff + σ2noiseIn |

︸ ︷︷ ︸

complexity penalty

− 1

2
y>
(
Kff + σ2noiseIn

)−1
y

︸ ︷︷ ︸

data fit

(79)

, where we define the squared exponential kernel kSE (xi, xj) = σ2 exp

[
D∑

d=1

−(xi,d−xj,d)
2

2l2
d

]

for

xi, xj ∈ R
D.

The authors in Ober et al. (2021) go on to show that at optimal values, the data fit term
will converge towards N

2 , where N is the number of training points. Hence, once the model
has reached convergence, it can only increase its log-likelihood score by modifications to the
complexity penalty term, which can be broken up as follows:

1

2
log | Kff + σ2noiseIn |= N

2
log σ2f +

1

2
log | K̃ff + ˜σ2noiseIn | (80)

, where we introduced the reparametrizations Kff = σ2K̃ff and σ2noise = σ2 ˜σ2noise. We can
easily see that if this term is to be minimized, one could decrease σf with the caveat that
this would decrease model fit. Hence, the only solution is to have high correlations values in
Kff so as to get a determinant close to 0.
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In the remainder of this subsection, we derive similar results to Ober et al. (2021) but in
the sparse scenario. We introduce the collapsed bound introduced in Titsias (2009):

LT itsias = logN
(
y | Qff + σ2noiseIn

)
− 1

2σ2noise
Tr [Kff −Qff ] (81)

∝ − 1

2
log | Qff + σ2noiseIn |

︸ ︷︷ ︸

complexity penalty

− 1

2
y>
(
Qff + σ2noiseIn

)−1
y

︸ ︷︷ ︸

data fit

− 1

2σ2noise
Tr [Kff −Qff ]

︸ ︷︷ ︸

trace term

(82)

∝ −N
2
σ2 − 1

2
log | Q̃ff + ˜σ2noiseIn | − 1

2σ2
y>
[

Q̃ff + ˜σ2noiseIn

]

y (83)

− 1

2 ˜σ2noise
Tr
[

K̃ff − Q̃ff

]

, where we have used again the following notation for kernel terms k (·, ·) = σ2 ˜k (·, ·) and

σ2noise = σ2 ˜σ2noise. To obtain predictions at testing time under this framework we can make
use of the optimal q(U) being given by the following first two moments:

m(U∗) = σ−2
noiseKuu

[
Kuu + σ−2

noiseKufKfu

]−1
Kufy (84)

v(U∗) = Kuu

[
Kuu + σ−2

noiseKufKfu

]−1
Kuu (85)

, which we can plug in to standard SVGP predictive equations (equations (31) and (32)).
We adapt the derivation in Ober et al. (2021) to our framework at hand:

∂LT itsias

∂σ2
=
∂ − N

2 σ
2 − 1

2 log | Q̃ff + ˜σ2noiseIn | − 1
2σ2 y

>
[

Q̃ff + ˜σ2noiseIn

]−1
y − 1

2 ˜σ2
noise

[

K̃ff − Q̃ff

]

∂σ2
(86)

= − N

2σ2
+

1

2σ4
y>
[

Q̃ff + ˜σ2noiseIn

]−1
y (87)

Hence, if we set the derivative to 0, then we obtain that σ2 = 1
N y

>
[

Q̃ff + ˜σ2noiseI
]−1

y,

which if we input it into the data fit term it results in N
2 , similar to the non-sparse scenario

analyzed in Ober et al. (2021). The difference between the sparse and non-sparse framework
is that after convergence in the data fit term, the model now has to achieve over-correlation
in Qff , while still minimizing Kff −Qff .

3.6 Pooling operations on stochastic layers

Previous work that dealt with combining GP with convolutional architectures Dutordoir
et al. (2020); Kumar et al. (2018); Blomqvist et al. (2018) have used in their experiments
simple architectures involving a couple of stacked layers. In this paper, we propose to
experiment with more modern architectures such as DenseNet Huang et al. (2017) or ResNet
He et al. (2016). However, both these architectures include pooling layers such as average
pooling, which for Euclidean data is a straightforward operation since we have a naturally
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induced metric. Since we are using stochastic layers that operate in the space of Gaussian
distributions, this introduces some complications as it is not desirable to sample from the
stochastic layers, subsequently applying the Euclidean space average pooling operation.
Nevertheless, in the remainder of this subsection we show a simple method for replicating
average pooling in Wasserstein space by using Wasserstein barycentres (Agueh and Carlier,
2011).

We consider probability measures µ1, ..., µk and fixed weights θ1, ..., θk that are positive

real numbers such that
K∑

k=1

θk = 1. For ν ∈ P2(R
d), where P2 is the set of Borel probabilities

on R with finite second moment and absolutely continuous with respect to Lebesque measures,
we consider the following functionals:

V(ν) =

K∑

k=1

θkW
2
2(µ, µk) (88)

V(µ̃) = min
µ∈P2

V(µ) (89)

, where V(µ̃) is defined as the barycentre with respect to the Wasserstein-2 distance of the set
of probabilities {µ1, ..., µk}. Intuitively, barycentres can be seen as the equivalent of averaging
in Euclidean space, while still maintaining the geometric properties of the distributions at
hand.

Theorem 9 (Theorem 4.2. in Álvarez-Esteban et al. (2016)) Assume Σ1, ...,ΣK are
symmetric positive semidefinite matrices, with at least one of them positive definite. We take
S0 ∈ M

+
d×d and define:

Sn+1 = S−1/2
n (

K∑

k=1

θk(S
1/2
n ΣkS

1/2
n )1/2)2S−1/2

n (90)

If N(0,Σ0) is the barycenter of N(0,Σ1), ...,N(0,ΣK) , then W 2
2 (N(0, Sn),N(0,Σ0) → 0 as

n→ ∞.

Remark 10 In the case of computing the barycentre of univariate Gaussian measures, the

iterative algorithm converges in one iteration to Σ0 =

(
∑K

k=1 θkΣ
1
2
k

)2

. This provides us

with a deterministic and single step equation to downsample stochastic layers, where we can

additionally calculate the mean of the barycentre by
K∑

k=1

θkmk, where {m1, · · · ,mK} represent

the first moments of the respective distributions.

4. DistGP Layer Networks & OOD detection

An outlier can be defined in various ways (Ruff et al., 2021). In this paper we follow the
most basic one, namely "An anomaly is an observation that deviates considerably from some
concept of normality." More concretely, it can be formalised as follows: our data resides in
X ∈ R

D, an anomaly/outlier is a data point x ∈ X that lies in a low probability region
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under P such that the set of anomalies/outliers is defined as A = {x ∈ X|p(x) ≤ ξ}, ξ ≥ 0,
with ξ is a threshold under which we consider data points to deviate sufficiently from what
normality constitutes.

Influence of enforced Lipschitz condition. We aim to visually assess if the Lipschitz
condition imposed via Proposition 5 negatively influences the predictive capabilities. We
use a standard neural network architecture with two hidden layers with 5 dimensions each,
with the affine embeddings operations described in equations (72) and (73) being replaced
by a non-convolutional dense layer. From Figure 8 we can notice that imposing a unitary
Lipschitz constant does not result in the over-regularization of the predictive mean. A slight
smoothing effect on the predictive mean can be noticed in output space. Moreover, for the
Lipschitz constrained version we can discern a better fit of the data manifold in terms of
distributional variance, with a noticeable difference in the second hidden layer.

Over-correlation in latent space. We aim to understand whether the over-correlation
phenomenon occurs for our model. We consider a standard neural network architecture with
two hidden layers with 50 hidden units per layer. From Figure 9 we can notice that for DKL,
the sparse framework does remove any unwanted over-correlations in the final hidden layer
latent space. In the unconstrained model, there is a notion of locality in the final hidden layer
latent space, albeit of a lower degree compared to the DKL model. With regards to OOD
detection, of utmost importance is the fact that regions outside the training set manifold have
a correlation value of 0. Perhaps unsurprisingly, introducing a unitary Lipschitz constraint
resulted in an increased correlation in the latent space, alongside a smoother predictive mean.

4.1 Reliability of in-between uncertainty estimates

We are interested to test our newly introduced module in scenarios where in-between uncer-
tainty can fail. For this we use the “snelson” dataset, with the training set taken to comprise
the intervals between 0.0 and 2.0, respectively 4.0 and 6.5. Thereby, in an ideal scenario we
would expect our model to offer high distributional uncertainty estimates between 2.0 and
4.0, which constitutes our in-between region. To benchmark our approach, we compare it to
a collapsed SGPR as defined in Titsias (2009).

From Figure 10 we can observe that the behaviour is strikingly similar between a collapsed
SGPR and a three layer DistGP-Layers network.

Reliability of within-data uncertainty estimates. Within-data uncertainty or more
conveniently epistemic uncertainty is responsible to detect regions of the input space where
the variance in the model parameters, in this case of U , can be further reduced if we add
more data points in said input regions. To test if our newly introduced module can provide
reliable within-data uncertainty estimates one can proceed to subsample a dataset (as done
in Figure 11 subsampling in the interval [0, 2.5]), with the intended effect being of an increase
in within-data uncertainty across the input region where we subsampled.

From Figure 11 we can see that despite the low number of training points, it did not result
in over-fitting, with our model exhibiting a relatively smooth predictive mean. Moreover,
in comparison to Figure 9 we can notice that the within-data uncertainty has substantially
increased in the [0, 2.5] interval.
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(a) DistGP-NN without Lipschitz constraint (b) DistGP-NN with Lipschitz constraint

Figure 8: Layer-wise predictive moments of DistGP-NN models (with or without unitary
Lipschitz constraints) trained on toy binary classification dataset.

MNIST and CIFAR10. We compare our approach on the standard image classification
benchmarks of MNIST Lecun et al. (1998) and CIFAR-10 Krizhevsky (2009), which have
standard training and test folds to facilitate direct performance comparisons. MNIST contains
60,000 training examples of 28× 28 sized grayscale images of 10 hand-drawn digits, with a
separate 10,000 validation set. CIFAR-10 contains 50,000 training examples of RGB colour
images of size 32× 32 from 10 classes, with 5,000 images per class. We preprocess the images
such that the input is normalized to be between 0 and 1. We compare our model primarily
against the original shallow Convolutional Gaussian process Van der Wilk et al. (2017) and
Deep Convolutional Gaussian Process (DeepConvGP) Blomqvist et al. (2018). In terms of
model architectures, we have used a standard stacked convolutional approach, with the model
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(a) Collapsed SGPR (b) DKL

(c) DistGP-NN Not Constrained (d) DistGP-NN Lipschitz Constraint

Figure 9: Top row: Predictive mean and variance of parametric part of SGP; Middle
row: Predictive mean and variance of non-parametric part of SGP; Bottom row: Kernel
evaluated across whole input span with respect to -2.0 (blue) and 2.0 (orange).

entitled “DistGP-DeepConv” consisting of 64 hidden units for the “Convolutionally Warped
DistGP” part of the module, respectively, 5 hidden units for the “DistGP activation-function”
part. For the DeepConvGP, we used 64 hidden units at each hidden layer. All models use
a stride of 2 at the first layer. In all experiments we use 250 inducing points at each layer.
Lastly, we also devised 18 hidden layers size versions of the ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017) architectures.
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(a) Collapsed SGPR (b) DistGP-NN

Figure 10: Reliability of in-between uncertainty. Top row: Predictive mean and variance of
parametric part of SGP; Bottom row: Predictive mean and variance of non-parametric part
of SGP.

(a) Collapsed SGPR (b) DistGP-NN

Figure 11: Reliability of within-data uncertainty. Top row: Predictive mean and variance
of parametric part of SGP; Bottom row: Predictive mean and variance of non-parametric
part of SGP.

Table 1 shows the classification accuracy on MNIST and CIFAR-10 for different Convolu-
tional GP models. Compared to other convolutional GP approaches, our method achieves
superior classification accuracy compared to DeepConvGP (Blomqvist et al., 2018). We
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Convolutional GP models Hidden Layers MNIST CIFAR-10

ConvGP 0 98.83 64.6

DeepConvGP 1 98.38 58.65

DeepConvGP 2 99.24 73.85

DeepConvGP 3 99.44 75.89

DistGP-DeepConv 1 99.01 70.12

DistGP-DeepConv 2 99.43 76.54

DistGP-DeepConv 3 99.67 78.49

DistGP-ResNet-18 18 99.52 74.56
DistGP-DenseNet 18 99.75 75.29

Hybrid NN-GP models Hidden Layers MNIST CIFAR-10

Deep Kernel Learning 5 99.2 77.0

GPDNN 40 99.95 93.0

Table 1: Performance on MNIST and CIFAR-10. Deep Kernel Learning are the set of models
from Wilson et al. (2016), whereas GPDNN are the set of models published in Bradshaw
et al. (2017). Other results than our method are taken from the respective publications

find that for our method, adding more layers increases the performance significantly. This
observation is only available for a couple of stacked layers, as the results from our ResNet
and DenseNet variants do not support this assertion. The GPDNN models introduced in
Bradshaw et al. (2017) are nonetheless close to state of the art on CIFAR10 but also using a
variant of DenseNet (Huang et al., 2017) as the building blocks for their GP classifier.

Outlier detection on different fonts of digits. We test if DistGP-DeepConv models
outperform OOD detection models from literature such as DUQ (van Amersfoort et al., 2020),
OVA-DM (Padhy et al., 2020) and OVVNI (Franchi et al., 2020). In these experiments we
assess the capacity of our model to detect domain shift by training it on MNIST and looking
at the uncertainty measures computed on the testing set of MNIST and the entire NotMNIST
dataset (Bulatov, 2011), respectively SVHN (Netzer et al., 2011). The hypothesis is that
we ought to see both higher predictive entropy and differential entropy for distributional
uncertainty (respectively higher OOD measures specific to each of the baseline models) for
the digits stemming from a wide array of fonts present in NotMNST as none of the fonts are
handwritten, respectively the digit fonts in SVHN exhibit different backgrounds, orientations
besides not being handwritten.

From Table 2 we can observe that generally all models exhibit a shift in their uncertainty
measure between MNIST and notMNIST, with the notable exception of OVNNI which
barely manages to better separate the two datasets compared to a random guess. Moreover,
OVA-DM manages to completely separate the two datasets with the caveat that it obtains
lower predictive entropy for MNIST vs. notMNIST compared to DistGP-DeepConv. The
latter achieves similar results to DUQ, with the added benefit of a higher degree of separation
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Model
MNIST vs. NotMNIST

AUC
MNIST vs. SVHN

AUC

AUC Pred. Entropy OOD measure Pred. Entropy OOD measure

DistGP-DeepConv 0.92 0.82 0.95 0.98

0VA-DM 0.73 1.0 0.70 1.0

OVNNI 0.68 0.55 0.56 0.81

DUQ 0.82 0.81 0.65 0.74

Table 2: OOD detection results. Performance of OOD detection based on predictive
entropy and distributional differential entropy (for baseline OOD models each has a different
OOD measure). Models are trained on MNIST (normative data).

using predictive entropy. In the case of SVHN we can observe similar patterns to notMNIST,
with OVA-DM and DistGP-DeepConv managing to almost separate the two datasets (MNIST
vs. SVHN) by inspecting their uncertainty measure, again with the caveat for OVA-DM that
it exhibits lower predictive entropy for SVHN in comparison to MNIST.

Sensitivity to input perturbations. MorphoMNIST (Castro et al., 2018) enables the
systematic deformation of MNIST digits using morphological operations. We use MorphoM-
NIST to better understand the outlier detection capabilities of each method by exposing
them to increasingly deformed samples. We use the first 500 MNIST digits in the testing set
to generate new images with controlled morphological deformations. We use the swelling
deformation with a strength of 3 and increasing radius from 3 to 14. Our hypothesis is that
the predictive entropy should increase as the deformation is increased, alongside with the
distributional differential entropy, which is a measure of the overall uncertainty in the logit
space. This is motivated by the fact that the newly obtained images from MorphoMNIST are
outside of the data manifold, which is different from the concept of having high uncertainty
as expressed by entropy upon seeing a difficult digit to classify. In this case we would expect
high entropy but low differential entropy.

All models are able to pick up on the shift in the data manifold as swelling is applied
to the original digits, with the model-specific uncertainty measure steadily increasing (for
OVNNI, a decrease in the measure translates to higher uncertainty) as increasing deformation
is applied. However, for OVA-DM and DUQ the predictive entropy is stable or actually
decreases as more deformation is applied, which is in contrast to what one would expect
(Figure 12).

To further assess the sensitivity to input perturbations of our methods, we employ the
experiments introduced in Gal and Ghahramani (2016a) by successively rotating digits from
MNIST. We expect to see an increase in both predictive entropy and distributional differential
entropy as digits are rotated. For our experiment we rotate digit 6. When the digit is rotated
by around 180 degrees the entropy and differential entropy should revert back closer to initial
levels, as it will resembles digit 9.
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(a) DistGP-DeepConv (b) OVA-DM

(c) OVNNI (d) DUQ

Figure 12: Predictive entropy and model-specific uncertainty measure for varying models
as swelling of increasing radius is applied on MNIST digits. Higher values of uncertainty
measure indicate outlier status, expect for OVNNI where the inverse is true. Results are
shown for 3 hidden layers with DistGP-DeepConv dimensionality being set to 5, whereas the
capacity of the convolutionally warped DistGPs was set to 12, whereas for OOD models we
use 128 hidden units at each layer.

From Figure 13 we can notice that all models exhibit an increase (decrease for OVNNI
translates into higher uncertainty) in their specific uncertainty measures for rotation angles
between 40 and 160, respectively between 240 and 320 degrees. In terms of predictive
entropy, we can discern relatively stable and highly overlapping values for OVA-DM and
DUQ, whereas for DistGP-DeepConv and OVNNI we can observe a clear pattern of increases
and decreases as what was originally a 6 becomes a 9.
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(a) DistGP-DeepConv (b) OVA-DM

(c) OVNNI (d) DUQ

Figure 13: Predictive entropy and model-specific uncertainty measure for varying models
as varying degrees of rotation is applied to digit 6. Higher values of uncertainty measure
indicate outlier status, expect for OVNNI where the inverse is true. Results are shown for 3
hidden layers with DistGP-DeepConv dimensionality being set to 5, whereas the capacity
of the convolutionally warped DistGPs was set to 12, whereas for OOD models we use 128
hidden units at each layer.

5. DistGP-based Segmentation Network & OOD Detection in Medical

Imaging

The above introduced modules in Sec. 3.2 can be used to construct a convolutional network
that benefits from properties of DistGP. Specifically, we construct a 3D network for segmenting
volumetric medical images, which is depicted in Figure 14 (top). It consists of a convolved
GP layer, followed by two measure-preserving DistGP layers. Each hidden layer uses filters
of size 5×5×5. To increase the model’s receptive field, in the second layer we use convolution
dilated by 2. We use 250 inducing points and 2 channels for the DistGP “activation functions”.
The affine operators project the stochastic patches into a 12 dimensional space. The size of
the network is limited by computational requirements for GP-based layers, which is an active
research area. Like regular convolutional nets, this model can process input of arbitrary
size but GPU memory requirement increases with input size. We here provide input of size
323 to the model, which then segments the central 163 voxels. To segment a whole scan we
divide it into tiles and stitch together the segmentations.
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Figure 14: Top: Schematic of proposed DistGP activated segmentation net. Above and
below each layer we show the number of channels and their dimension respectively. Bottom:
Visual depiction of the two uncertainties in DistGP after fitting a toy regression dataset.
Hyperparameters and variational approximate posteriors are optimized. Distributional
uncertainty increases outside the manifold of training data and is therefore useful for OOD
detection.

5.1 Evaluation on Brain MRI

In this section we evaluate our method alongside recent OOD models (van Amersfoort
et al., 2020; Franchi et al., 2020; Padhy et al., 2020), assessing their capabilities to reach
segmentation performance comparable to well-established deterministic models and whether
they can accurately detect outliers.

5.1.1 Data and pre-processing

For evaluation we use publicly available datasets:
1) Brain MRI scans from the UKBB study (Alfaro-Almagro et al., 2018), which contains

scans from nearly 15,000 subjects. We selected for training and evaluation the bottom 10%
percentile in terms of white matter hypointensities with an equal split between training
and testing. All subjects have been confirmed to be normal by radiological assessment.
Segmentation of brain tissue (CSF,GM,WM) has been obtained with SPM12.

2) MRI scans of 285 patients with gliomas from BraTS 2017 (Bakas et al., 2017). All
classes are fused into a tumor class, which we will use to quantify OOD detection performance.
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In what follows, we use only the FLAIR sequence to perform the brain tissue segmentation
task and OOD detection of tumors, as this MRI sequence is available for both UKBB and
BraTS. All FLAIR images are pre-processed with skull-stripping, N4 bias correction, rigid
registration to MNI152 space and histogram matching between UKBB and BraTS. Finally, we
normalize intensities of each scan via linear scaling of its minimum and maximum intensities
to the [-1,1] range.

5.1.2 Brain tissue segmentation on normal MRI scans

Model Hidden Layers DICE CSF DICE GM DICE WM

OVA-DM (Padhy et al., 2020) 3 0.72 0.79 0.77
OVNNI (Franchi et al., 2020) 3 0.66 0.77 0.73

DUQ (van Amersfoort et al., 2020) 3 0.745 0.825 0.781
DistGP-Seg (ours) 3 0.829 0.823 0.867

U-Net 3 scales 0.85 0.89 0.86

Table 3: Performance on UK Biobank in terms of Dice scores per tissue.

Task: We train and test our model on the task of segmenting brain tissue of healthy UKBB
subjects. This corresponds to the within-data manifold in our setup.

Baselines: We compare our model with recent Bayesian approaches for enabling task-
specific models (such as image segmentation) to perform uncertainty-based OOD detection
(van Amersfoort et al., 2020; Franchi et al., 2020; Padhy et al., 2020). For fair comparison,
we use these methods in an architecture similar to ours (Figure 14), except that each layer is
replaced by standard convolutional layer, each with 256 channels, LeakyRelu activations, and
dilation rates as in ours. We also compare these Bayesian methods with a well-established
deterministic baseline, a U-Net with 3 scales (down/up-sampling) and 2 convolution layers
per scale in encoder and 2 in decoder (total 12 layers).

Results: Table 3 shows that DistGP-Seg surpasses other Bayesian methods with respect to
Dice score for all tissue classes. Our method approaches the performance of the deterministic
U-Net, which has a much larger architecture and receptive field. We emphasize this has not
been previously achieved with GP-based architectures, as their size (e.g., number of layers)
is limited due to computational requirements. This supports the potential of DistGP, which
is bound to be further unlocked by advances in scaling GP-based models.

5.1.3 Outlier detection in MRI scans with tumors

Task: The previous task of brain tissue segmentation on UKBB serves as a proxy task
for learning normative patterns with our network. Here, we apply this pre-trained network
on BRATS scans with tumors. We expect the region surrounding the tumor and other
related pathologies, such as squeezed brain parts or shifted ventricles, to be highlighted with
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Model DICE
FPR=0.1

DICE
FPR=0.5

DICE
FPR=1.0

DICE
FPR=5.0

OVA-DM (Padhy et al., 2020) 0.382 0.428 0.457 0.410
OVNNI (Franchi et al., 2020) ≤ 0.001 ≤ 0.001 ≤ 0.001 ≤ 0.001

DUQ (van Amersfoort et al., 2020) 0.068 0.121 0.169 0.182
DistGP-Seg (ours) 0.512 0.571 0.532 0.489

VAE-LG (Chen et al., 2019) 0.259 0.407 0.448 0.303
AAE-LG (Chen et al., 2019) 0.220 0.395 0.418 0.302

Table 4: Performance comparison of Dice for detecting outliers on BraTS for different
thresholds obtained from UKBB.

higher distributional uncertainty, which is the OOD measure for the Bayesian deep learning
models. To evaluate quality of OOD detection at a pixel level, we follow the procedure in
Chen et al. (2019), for example to get the 5.0% False Positive Ratio threshold value we
compute the 95% percentile of distributional variance on the testing set of UKBB, taking
into consideration that there is no outlier tissue there. Subsequently, using this value we
threshold the distributional variance heatmaps on BraTS, with tissue having a value above
the threshold being flagged as an outlier. We then quantify the overlap of the pixels detected
as outliers (over the threshold) with the ground-truth tumor labels by computing the Dice
score between them.

Results: Table 4 shows the results from our experiments with DistGP and compared
Bayesian deep learning baselines. We also provide performance of reconstruction-based OOD
detection models as reported in Chen et al. (2019) for similar experimental setup. DistGP-Seg
surpasses its Bayesian deep learning counterparts, as well as reconstructed-based models. In
Figure 15 we provide representative results from the methods we implemented for qualitative
assessment. Moreover, although BRATS does not provide labels for WM/GM/CSF tissues
hence we cannot quantify how well these tissues are segmented, visual assessment shows our
method compares favorably to compared counterparts.

In Figure 16 we plotted the different differential entropy measures based on BRATS
scans by overlying their tumor labels on the obtained uncertainties from our model. We can
notice that tumor tissue is highlighted with higher inside and outside of the data manifold
uncertainty compared to healthy tissue. More detailed plots are available in Appendix C.

6. Discussion & Conclusion

We have introduced a novel Bayesian convolutional layer with Lipschitz continuity that is
capable of reliably propagating uncertainty. We have shown on a wide array of general OOD
detection tasks that it surpasses other OOD models from literature, while also offering an
increase in accuracy compared to counterpart architectures based solely on Euclidean space
SVGPs (Blomqvist et al., 2018). General criticism surrounding deep and convolutional GP
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Figure 15: Comparison between models in terms of voxel-level outlier detection of tumors
on BRATS scans. Mean segmentation represents the hard segmentation of brain tissues.
OOD measure is the quantification of uncertainty for each model, using their own procedure.
Higher values translate to appartenance to outlier status, whereas for OVNNI it is the
converse. OOD measures have been normalized to be between 0 and 1 for each model in
part.

involves the issue of under-performance compared to other Bayesian deep learning techniques,
and especially compared to deterministic networks. Our experiments demonstrate that
our 3-layers model, size limited due to computational cost, is capable of approaching the
performance of a U-Net, an architecture with a much larger receptive field. Further advances
in computational efficient GP-based models, an active area of research, will enable our model
to scale further and unlock its full potential. Importantly, we showed that our DistGP-Seg
network offers better uncertainty estimates for OOD detection than state-of-the-art OOD
detection models, and also surpasses some recent unsupervised reconstruction-based deep
learning models for identifying outliers corresponding to pathology on brain scans.

This framework can also be used for regression and classification tasks within a medical
imaging context, facilitating the adoption of deep learning in clinical settings thanks to
enhanced accountability in predictions. For example, parts of scans flagged with high
distributional uncertainty can be sent back for inspection and quality control. To support
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(a) (b)

Figure 16: Comparison in terms of voxel-level epistemic and distributional differential
entropy between non-tumor tissues and different tumor gradations from subjects in the
BRATS dataset.

our claim, we have included additional results on flagging white matter hyperintensities as
outliers (see Appendix D), respectively retina pathologies (see Appendix E).

Our results indicate that OOD methods that do not take into account distances in latent
space, such as OVNNI, tend to fail in detecting outliers, whereas OVA-DM and DUQ that
make predictions based on distances in the last layer perform better. Our model utilises
distances at every hidden layer, thus allowing the notion of outlier to evolve gradually through
the depth of our network. This difference can be noticed in the smoothness of OOD measure
for our model in comparison to other methods in Figure 15. Furthermore, the issue of
feature collapse (van Amersfoort et al., 2020) in deep networks can be precisely controlled
due to the mathematical underpinnings of our proposed network, enabling us to assess the
scenarios when this happens by simple equations. Additionally, we have shown that despite
the possibility of achieving over-correlation in the latent space via the loss function, that
this does not happen in practice.

A drawback of our study resides in the small architecture used on medical imaging scans.
Extending our “measure preserving DistGP” module to larger architectures such as U-Net for
segmentation or modern CNNs for whole-image prediction tasks remains a prospective research
avenue fuelled by advances in scalability of SGP. Moreover, our experiments involving more
complicated architectures, such as ResNet or DenseNet for standard multi-class classification,
have not managed to surpass in accuracy a far less complex model with only 3 hidden layers.
A plausible reason behind this under-fitting resides in the factorized approximate posterior
formulation, which was shown to negatively affect predictive performance compared to MCMC
inference schemes (Havasi et al., 2018). We posit that using alternative inference frameworks
(Ustyuzhaninov et al., 2019) whereby we impose correlations between layers might alleviate
this issue. Moreover, the lack of added representational capacity upon adding new layers
raises some further questions regarding what are optimal architectures for hierarchical GPs,
what inductive biases do they need or how to properly initialize them to facilitate adequate
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training. Additionally, our comparison with respect to reconstruction based approaches
towards OOD detection was not complete as it did not include a comprehensive list of recent
models (Dey and Hong, 2021; Pinaya et al., 2021; Schlegl et al., 2019; Baur et al., 2018).
However, comparing our proposed model with reconstruction based approaches was not our
intended goal for this paper, the main aim being to compare with models which can provide
accurate predictive results alongside OOD detection capabilities at the same time. Another
limitation of our work is the training speed for our proposed module, with matrix inversion
operations and log determinants being required at each layer. Future work should consider
matrix inversion free inference techniques for GPs (van der Wilk et al., 2020).

In conclusion, our work shows that incorporating DistGP in convolutional architectures
provides both competitive performance and reliable uncertainty quantification in medical
image analysis alongside general OOD tasks, opening up a new direction of research.
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Appendix A. Proving Lipschitz bounds in a DistGP layer

We here prove Propositions 3 and 5 of Sec. 3.3.

Lemmas on p-norms/ We have the following relations between norms : ‖x‖2≤ ‖x‖1 and
‖x‖1≤

√
D‖x‖2. Will be used for the proof of Proposition 2.

Proof of Proposition 3. Throughout this proof we shall refer to the first two moments
of a Gaussian distribution by m(·), v(·). Explicitly writing the Wasserstein-2 distances of
the inequality we get:

|m(F (µ))−m(F (ν))|2+|v(F (µ))− v(F (ν)|2≤ L|m1 −m2|2+|Σ1 − Σ2|2 (91)

We focus on the mean part and applying Cauchy–Schwarz we get the following inequality:

|[Kµu −Kνu]K
−1
uum|2≤ ‖Kµu −Kνu‖22‖K−1

uum‖22 (92)

To simplify the problem and without loss of generality we consider Uz to be a sufficient
statistic for the set of inducing points Z. Expanding the first term of the r.h.s. we get:

[

σ2 exp
−W2(µ,Uz)

l2
− σ2 exp

−W2(ν, Uz)

l2

]2

(93)

We assume ν = µ+ h, where h ∼ N (|m1 −m2|, |Σ1 − Σ2|) and µ is a high density point in
the data manifold, hence W2(µ−Uz) = 0. We denote m(h)2 + var(h)2 = λ. Considering the
general equality log(x− y) = log(x) + log(y) + log( 1y − 1

x) and applying it to our case we get
that:

log | m(F (µ))−m(F (ν)) |2 ≤ log

[

σ2 − σ2 exp
−λ
l2

]2

(94)

≤ 2 log σ2 − 2
λ

l2
+ 2 log

[

exp
λ

l2
− 1

]

(95)

≤ 2 log

[

σ2 exp
λ

l2

]

(96)

We have the general inequality expx ≤ 1 + x+ x2 for x ≤ 1.79, which for 0 ≤ x ≤ 1 can be
modified as expx ≤ 1+ 2x. Applying this new inequality and taking the exponential we now
obtain:

| m(F (µ))−m(F (ν)) |2 ≤
[

σ2 + 2σ2
λ

l2

]2

(97)

≤ σ4 + σ4
λ

l2
+ 4σ4

(λ)2

l4
(98)

≤ 16σ4
λ

l2
(99)

where the last inequality follows from the ball constraints made in the definition. We now
move to the variance components of the Lipschitz bound, we notice that

| v(F (µ)) 1

2 − v(F (ν))
1

2 |2 ≤| v(F (µ)) 1

2 − v(F (ν))
1

2 || v(F (µ)) 1

2 + v(F (ν))
1

2 | (100)

≤| v(F (µ))− v(F (ν)) | (101)
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which after applying Cauchy–Schwarz results in an upper bound of the form:

‖Kµ,Uz
−Kν,Uz

‖22‖K−1

Uz
(KUz−S)K

−1

Uz
‖2 (102)

Using that ‖Kµ,Uz
−Kν,Uz

‖22≤ 16σ4λ
l2

we obtain that:

|v(F (µ))− v(F (ν))|≤ 16σ4λ

l2
‖K−1

Uz
(KUz

− S)K−1

Uz
‖2 (103)

Now taking into consideration both the upper bounds on the mean and variance compo-
nents we arrive at the desired Lipschitz constant.

Proof of Proposition 5. Using the definition for Wasserstein-2 distances for the l.h.s of
the inequality, we can re-express as follows:

W2 (f(µ), f(ν)) ≤ ‖m1A−m2A‖22+‖(σ21A2)1/2 − (σ22A
2)1/2‖2F (104)

which after rearranging terms and noticing that inside the Frobenius norm we have scalars,
becomes:

W2 (f(µ), f(ν)) ≤ ‖(m1 −m2)A‖22+[σ21A
2)1/2 − (σ22A

2)1/2]2 (105)

We can now apply the Cauchy–Schwarz inequality for the part involving means and multiplying
the right hand side with

√
C, which represents the number of channels, we get:

‖(m1−m2)A‖22+[σ21A
2)1/2−(σ22A

2)1/2]2 ≤ ‖m1−m2‖22
√
C‖A‖22+

√
C[σ21A

2)1/2−(σ22A
2)1/2]2

(106)
We can notice that the Lipschitz constant for the component involving mean terms is

√
C‖A‖22.

Hence, we try to prove that the same L is also available for the variance terms component.
Hence, we can affirm that:

L =
√
C‖A‖22↔

√
C[σ21A

2)1/2 − (σ22A
2)1/2]2 ≤ [σ1 − σ2]

2
√
C‖A‖22 (107)

By virtue of Cauchy–Schwarz we have the following inequality
√
C[σ1A − σ2A]

2 ≤ [σ1 −
σ2]

2
√
C‖A‖22. Hence the aforementioned if and only if statement will hold if we prove that

√
C
[

(σ21A
2)

1

2 − (σ22A
2)

1

2

]2

≤
√
C [σ1A− σ2A]

2 (108)

which after expressing in terms of norms becomes:

√
C [‖σ1A‖2−‖σ2A‖2]2 ≤

√
C [‖σ1A‖1−‖σ2A‖1]2 (109)

Expanding the square brackets gives:

√
C
[

‖σ1A‖22+‖σ2A‖22−2‖σ1A‖2‖σ2A‖2
]

≤
√
C
[

‖σ1A‖21+‖σ2A‖21−2‖σ1A‖1‖σ2A‖1
]

(110)

This inequality holds by applying the p-norm lemma, thereby the if and only if statement
is satisfied. Consequently, the Lipschitz constant is

√
C‖A‖22.
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Appendix B. Deriving function contraction requirements in DistGP

Layers

We here prove Proposition 7 of Sec. 3.4.

Proof of Proposition 7. We are interested in determining the specific scenarios in which
the function space collapses to constant values. Hence we explicitly write E

[

‖ul(x)− ul(x
∗)‖22| ul−1

]

as:

=

Dl
∑

j=1

E

[

‖ujl (x)− ujl (x
∗)‖22| ul−1

]

(111)

=

Dl
∑

j=1

E

[

(

ujl (x)
)2

| ul−1

]

− 2E
[

ujl (x)u
j
l (x

∗) | ul−1

]

+ E

[

(

ujl (x
∗)
)2

| ul−1

]

(112)

=

Dl
∑

j=1

σ2l +m2
l (x)− 2ml(x)ml(x

∗)− 2kW2 [µl(x), µl(x
∗)] + σ2l +m2

l (x
∗) (113)

=

Dl
∑

j=1

[

mj
l (x)−mj

l (x
∗)
]2

+ 2σ2l − 2σ2l exp−
[

| mj
l−1

(x)−mj
l−1

(x∗) |2
2l2l

]

(114)

, where in the last equation we have ignored the variance part of the Wasserstein-2 kernel since
the two variance terms are equal. We make use of the following inequality 1− exp−x ≤ x
for x ≥ 0 and equality only in the case that x = 0, resulting in the following upper bound:

E
[

‖ul(x)− ul(x
∗)‖22|ul−1

]

≤
Dl
∑

j=1

[

mj
l (x)−mj

l (x
∗)
]2

+ σ2l
| mj

l−1
(x)−mj

l−1
(x∗) |2

l2l
(115)

We can now view the previously defined operator ml(x)Wl as an inner product in vector
space between a tiled version of ml(x) and a normalised version of Wl, more specifically:

〈[ml(x), · · · ,ml(x)] ,

[

Wl,1

ml
, · · · , Wl,mlDl−1

ml

]

〉 = ml(x)Wl (116)

where ml is the number of dimensions caused by the affine embedding function Ψl in the
l-th layer of the hierarchy.

Our current goal is to relate mj
l (·) to mj

l−1
(·). We can now apply Cauchy-Schwarz to:

| mj
l (x)−mj

l (x
∗) |2=| ml−1(x)Wl −ml−1(x∗)Wl |2 (117)

=| 〈[ml−1(x)−ml−1(x
∗), · · · ,ml−1(x)−ml−1(x

∗)] ,

[

Wl,1

ml
, · · · , Wl,mlDl−1

ml

]

〉 |2 (118)

≤ Dl−1ml [ml−1(x)−ml−1(x
∗)]2 ∗ 〈W̃l, W̃l〉 (119)

where in the last line we denoted W̃l = [
Wl,1

Dl
, · · · , Wl,Dl−1

ml

ml
] to avoid cluttering.
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We can now apply the previous result to equation (115):

E
[

‖ul(x)− ul(x
∗)‖22|| ul−1

]

≤
Dl
∑

j=1

mlDl−1 (ml−1(x)−ml−1(x
∗))2 ∗ 〈W̃l, W̃l〉 (120)

+
σ2l
l2l

| mj
l−1

(x)−mj
l−1

(x∗) |2

≤
Dl
∑

j=1

[

mlDl−1 ∗ 〈W̃l, W̃l〉+
σ2l
l2l

]

| mj
l−1

(x)−mj
l−1

(x∗) |2

(121)

We can now recursively apply the previously derived Cauchy-Schwarz based inequality to
obtain:

E

[

|| ul(x)− ul(x
∗) ||22 |{ul}l−1

l=1

]

≤
[

mlDl−1 ∗ 〈W̃l, W̃l〉+
σ2l
2l2l

] l−1
∏

l=1

DlmlDl−1〈W̃l, W̃l〉 (122)

[m1(x)−m1(x
∗)]2

By Markov’s inequality, for any ε > 0 we have that:

P (|| ul+1(x)− ul+1(x
∗) ||2≥ ε) ≤ 1

ε2

[

mlDl−1 ∗ 〈W̃l, W̃l〉+
σ2l
2l2l

] l−1
∏

l=1

DlmlDl−1〈W̃l, W̃l〉

(123)

[m1(x)−m1(x
∗)]2

Then, only in the case that
[

mlDl−1 ∗ 〈W̃l, W̃l〉+ σ2

l

2l2
l

]

≤ 1 and DlmlDl−1〈W̃l, W̃l〉 ≤ is

satisfied for intermediate layers, we can apply the first Borel-Cantelli lemma to obtain:

P (∩∞

l=1∪∞

m=l || um(x)− um(x∗) ||2≥ ε) = 0 (124)

Lastly, we can express the following:

P (|| un(x)− un(x
∗) ||2→ 0) = P

(

∩∞

k=1 ∪∞

l=1 ∩∞

m=l || um(x)− um(x∗) ||2≤
1

k

)

(125)

= 1− P

(

∪∞

k=1 ∩∞

l=1 ∪∞

m=l || um(x)− um(x∗) ||2≥
1

k

)

(126)

≥ 1−
∞
∑

k=1

P

(

∩∞

l=1∪∞

m=l || um(x)− um(x∗) ||2≥
1

k

)

= 1

(127)

From which we obtain the proof of our proposition, respectively P (|| un(x)− un(x
∗) ||2→ 0) =

1
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Appendix C. Outlier detection in MRI scans with Tumors.

Remarks. We provide additional plots for the task investigated in sec. 5.1.3 for DistGP-Seg
and OVA-DM as they were the only models to provide decent outlier detection capabilities.
We refer the reader to Figures 17 and 18. From case study A, we can see that OVA-DM
is over-segmenting across all FPR levels almost randomly from outside the tumor area,
whereas DistGP-Seg is over-segmenting at FPR = {1.0, 5.0} areas around the margins of
the ventricles. For case study B, at FPR = {0.5, 1.0, 5.0} OVA-DM seems to be under-
segmenting the tumor in comparison to DistGP-Seg. The same observation can be made
again for case study C. Lastly, for case study D DistGP-Seg seems to be under-segmenting
for FPR = {0.1, 0.5}.

Appendix D. Outlier detection in MRI scans with WMH.

Data and pre-processing. Brain MRI scans from the 2015 Longitudinal Multiple Sclerosis
Lesion Segmentation Challenge Sweeney et al. (2013) which comprises of FLAIR, PD, T2-
weighted, and T1- weighted volumes from a total of 110 MR imaging studies (11 longitudinal
studies each of 10 subjects). All participants gave written consent and were scanned as part
of an institutional review board approved natural history protocol. For the purposes of the
task at hand, we only use the baseline FLAIR scans. All FLAIR images are pre-processed
with skull-stripping, N4 bias correction, rigid registration to MNI152 space and histogram
matching between UKBB and BraTS. Finally, we normalize intensities of each scan via linear
scaling of its minimum and maximum intensities to the [-1,1] range.

Remarks. The task of detecting white matter hyperintensities (WMH) is considerably
more difficult than detecting tumors, the latter usually presenting itself as a large blob,
whereas the former constitutes of multiple non-contiguous areas of varying shapes. From
Figure 19 we can notice that the large connected WMH regions are reliably detected as
outliers, with smaller disconnected WMH regions being only in some cases outlined. Another
issue is over-segmentation, as seen in case study C.

Appendix E. Evaluation on Retina scans.

Data and pre-processing. DRIVE: The Digital Retinal Images for Vessel Extraction
(DRIVE) dataset Staal et al. (2004) is a dataset for retinal vessel segmentation. It consists of
a total of JPEG 40 color fundus images; including 7 abnormal pathology cases. The images
were obtained from a diabetic retinopathy screening program in the Netherlands. The images
were acquired using Canon CR5 non-mydriatic 3CCD camera with FOV equals to 45 degrees.
Each image resolution is 584*565 pixels with eight bits per color channel (3 channels).

The set of 40 images was equally divided into 20 images for the training set and 20 images
for the testing set. Inside both sets, for each image, there is circular field of view (FOV)
mask of diameter that is approximately 540 pixels. Inside training set, for each image, one
manual segmentation by an ophthalmological expert has been applied. Inside testing set, for
each image, two manual segmentations have been applied by two different observers, where
the first observer segmentation is accepted as the ground-truth for performance evaluation.
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STARE: STructured Analysis of the Retina (STARE) database Hoover et al. (2000) was
created by scanning and digitizing the retinal image photographs. Hence, the image quality
of this database is less than the other public databases. The STARE dataset comprises 97
images (59 AMD and 38 normal) taken using a fundus camera (TOPCON TRV-50; Topcon
Corp., Tokyo, Japan) at a 35◦ field and with a resolution of 605× 700 pixels. Its retina scans
are from subjects suffering from the following retina pathologies: Hollenhorst Emboli Branch
Retinal Artery Occlusion, Cilio-Retinal Artery Occlusion, Branch Retinal Vein Occlusion,
Central Retinal Vein Occlusion, Hemi-Central Retinal Vein Occlusion, Background Diabetic
Retinopathy, Proliferative Diabetic Retinopathy, Arteriosclerotic Retinopathy, Hypertensive
Retinopathy, Coat’s, Macroaneurism, Choroidal Neovascularization.

IDRID: The Indian Diabetic Retinopathy Image Dataset (IDRID) dataset Porwal
et al. (2018), is a publicly available retinal fundus image database consisting of 516 images
categorised into two parts: retina images with the signs of Diabetic Retinopathy and/or
Diabetic Macular Edema; normal retinal images. Images were acquired using a Kowa VX-10a
digital fundus camera with 50◦ field of view (FOV). The images have resolution of 4288×2848
pixels and are stored in jpg file format. We have pre-processed these images to match the
FOV and resolution of DRIVE.

Task. We train a similar DistGP-Seg architecture (see sec. 5) adapted for 2D data on
DRIVE (normative data) to segment blood vessels, subsequently at testing time we use
STARE and IDRID (OOD data) to segment blood vessels in the presence of previouslt unseen
pathologies on Retina scans.

Blood vessel segmentation on normal Retina scans. From Figure 20 we can observe
that DistGP-Seg manages to correctly segment the blood vessels, while both distributional
and within-data uncertainty are relatively low, which is to be expected as these testing
examples represent in-distribution data.

Outlier detection of Retina pathologies. From Figure 21 we can observe that DistGP-
Seg manages to correctly identity the vast majority of soft and hard exudates as outliers.
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Figure 17: Detailed segmentation output for DistGP-Seg on BRATS. Mean segmentation
represents the hard segmentation of brain tissues. OOD measure is the quantification
of uncertainty for each model, using their own procedure. Higher values translate to
appartenance to outlier status.
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Figure 18: Detailed segmentation output for OVA-DM on BRATS. Mean segmentation
represents the hard segmentation of brain tissues. OOD measure is the quantification
of uncertainty for each model, using their own procedure. Higher values translate to
appartenance to outlier status.
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Figure 19: Detailed segmentation output for DistGP-Seg on WMH dataset. Mean segmen-
tation represents the hard segmentation of brain tissues. OOD measure is the quantification
of uncertainty for each model, using their own procedure. Higher values translate to apparte-
nance to outlier status.
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Figure 20: Detailed segmentation output for DistGP-Seg DRIVE dataset. Mean segmenta-
tion represents the hard segmentation of brain tissues. OOD measure is the quantification of
uncertainty for each model, using their own procedure. Higher values translate to apparte-
nance to outlier status.
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Figure 21: Detailed segmentation output for DistGP-Seg on STARE/IDRID datasets.
Mean segmentation represents the hard segmentation of brain tissues. OOD measure is
the quantification of uncertainty for each model, using their own procedure. Higher values
translate to appartenance to outlier status. Case studies A-E originate from STARE, whereas
the remainder from IDRID.
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