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Abstract

Thanks to their ability to learn flexible data-driven losses, Generative Adversarial Networks
(GANs) are an integral part of many semi- and weakly-supervised methods for medical
image segmentation. GANs jointly optimise a generator and an adversarial discriminator
on a set of training data. After training is complete, the discriminator is usually discarded,
and only the generator is used for inference. But should we discard discriminators? In
this work, we argue that training stable discriminators produces expressive loss functions
that we can re-use at inference to detect and correct segmentation mistakes. First, we
identify key challenges and suggest possible solutions to make discriminators re-usable at
inference. Then, we show that we can combine discriminators with image reconstruction
costs (via decoders) to endow a causal perspective to test-time training and further improve
the model. Our method is simple and improves the test-time performance of pre-trained
GANs. Moreover, we show that it is compatible with standard post-processing techniques
and it has the potential to be used for Online Continual Learning. With our work, we
open new research avenues for re-using adversarial discriminators at inference. Our code
is available at https://vios-s.github.io/adversarial-test-time-training.
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1. Introduction

Generative Adversarial Networks (GANs, Goodfellow et al. (2014)) have recently shown
astonishing performance in semi-supervised and weakly-supervised segmentation learning
(Cheplygina et al., 2019; Tajbakhsh et al., 2020), providing training signals when labels are
sparse or missing. GANs jointly optimise two networks in the adversarial setup: one to solve
an image generation task (generator) and the other to distinguish between real images and
the generated ones (discriminator or critic). In image segmentation, the generator is named
segmentor and, conditioned on an input image, learns to predict correct segmentation masks.
Meanwhile, the discriminator learns a data-driven shape prior and penalise the segmentor
when it produces unrealistic predictions. Once training is complete, the discriminator is
discarded, and the segmentor is used for inference.

Unfortunately, segmentors may decrease their test-time performance when the test data
fall outside the training data distribution. Often, mistakes are easy to detect by the human
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Figure 1: After training a GAN for semantic segmentation, whenever a test image falls out-
side the training data distribution, the segmentor may underperform and produce
unrealistic predictions. Our work suggests re-using already optimised adversarial
discriminators to tune the segmentor predictions on the individual test images
until the predicted mask satisfies the learned shape prior.

eye as they appear as holes inside of the predicted masks or scattered false positives. Would
a mask discriminator, trained to learn a shape prior, be able to spot such mistakes?

In this work, we introduce a simple mechanism to detect and correct such segmenta-
tion errors re-using components already developed during training. We adopt the emerging
paradigm of Test-time Training: a term coined by Sun et al. (2020). Test-time Training
fine-tunes pre-trained networks on the individual test samples without any additional su-
pervision, resulting in Variable Decision Boundary models (Sun et al., 2020; Wang et al.,
2021; Karani et al., 2021; Zhang et al., 2021; Bartler et al., 2021). We present strategies to
allow for the recycling of adversarial mask discriminators to make them useful at inference.
Inspired by Asano et al. (2020) showing that it is possible to train the early layers of a CNN
with just a single image, we propose fine-tuning these layers on each test sample until the
segmentor prediction satisfies the learned adversarial shape prior. We report an example
of the benefits of our method when applied on initially erroneous predictions in Fig. 1, and
summarise our contributions as follows:

• To the best of our knowledge, our work is the first attempt to re-use adversarial mask
discriminators at inference to detect and correct segmentation mistakes.

• We define specific assumptions that make discriminators still useful after training, and
present possible solutions to satisfy them.

• We investigate the possibility to further improve test-time segmentation through
causal learning, where we complement the discriminator with an image reconstructor.

• We explore various learning scenarios and report consistent performance increase on
multiple medical datasets.

This paper extends our previous publication (Valvano et al., 2021a) by: i) including a
mechanism to set the number of iterations at test-time automatically; ii) evaluating our
method on three additional datasets and in different training scenarios; iii) investigating if
reconstruction losses can endow the model a causal perspective to improve model perfor-
mance and inference speed; iv) analysing the method’s compatibility with post-processing
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techniques; v) including experiments in continual learning settings; and vi) including addi-
tional ablations.

2. Related Work

2.1 Learning from Test Samples

In our work, we use a discriminator to tune a segmentor on the individual test images until
it predicts realistic masks. The idea of unsupervised fine-tuning of a model on the test data
has been recently introduced by Sun et al. (2020) and termed Test-time Training (TTT). To
optimise a model on the training set, TTT suggests jointly minimising a supervised and an
auxiliary self-supervised loss, such as predicting the rotation angle of a given image. After
training, TTT uses the auxiliary task to fine-tune the model on the individual test samples
and adapts to potential distribution shifts without the need for supervision. Unfortunately,
Sun et al. only test their method “simulating” domain shifts through hand-crafted image
corruptions, such as noise and blurring, and do not investigate if TTT can also improve
semantic segmentation. Moreover, despite the success of TTT in image classification tasks,
designing a well-suited auxiliary task is non-trivial (Sun et al., 2020). For instance, predict-
ing rotation angles may be non-optimal in medical imaging, where images have different
acquisition geometries.

After this seminal work, Wang et al. (2021) proposed tuning an adaptor network to
minimise the prediction entropy on a test set. Unfortunately, this method needs access
to the entire test set for fine-tuning. Hence, Zhang et al. (2021) proposed to focus on a
single test point, minimising the marginal entropy of the model predictions under a set of
data augmentations. Unfortunately, neural networks are well known for making low-entropy
overly-confident predictions (Guo et al., 2017), and minimising segmentation entropy could
be sub-optimal. Moreover, the quality of the results also depends on making a good choice
of augmentations Zhang et al. (2021).

Recently, Karani et al. (2021) extended TTT to semantic segmentation by proposing
Test-time Adaptable Neural Networks (TTANN). At first, TTANN learns a data-driven
shape prior by pre-training a mask Denoising Autoencoder (DAE). At inference, the DAE
auto-encodes the masks generated by a segmentor producing a reconstruction error. This
error drives the fine-tuning (i.e. TTT) of a small adaptor CNN in front of the segmentor,
ultimately mapping the individual test images onto a normalised space that overcomes
domain shifts problems for the segmentor. Our work achieves the same goal but uses
GANs. Unlike TTANN, which separately pre-trains the mask DAE, our model is end-to-end
because it can learn the shape prior while optimising the segmentor. Moreover, it reduces
computational requirements as discriminators need less GPU memory and computation
than autoencoders.

Concurrent with our work, He et al. (2021) propose to use auto-encoders for TTT. They
propose a bespoke model that can be fine-tuned at test time to adapt to local distributions
using the decoder. However, our contribution is orthogonal to their work as He et al. (2021)
do not introduce any shape prior during adaptation.

Herein, we open new research directions towards learning re-usable discriminators that
can improve segmentation performance at inference. We also show that we can further
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enhance test-time performance by combining the discriminator with reconstruction costs
(via decoders), thus endowing a causal perspective to TTT.

2.2 Tackling Distribution Shifts

In recent years, improving model robustness under distribution shifts has attracted con-
siderable attention in medical imaging, where images vary among scanners, patients, and
acquisition protocols (Castro et al., 2020). In this context, domain adaptation and gener-
alisation have become relevant research areas. Several methods attempt to learn domain
invariant representations by anticipating the distribution difference between training and
test (Joyce et al., 2017; Li et al., 2018; Dou et al., 2019; Guan and Liu, 2021; Zhou et al.,
2021). However, these approaches usually require prior knowledge about the test data, such
as a small subset of (possibly labelled) images from the test distribution. Unfortunately,
these data can be expensive or even impossible to acquire for every target domain, and
distribution shifts might be not easily identifiable (Recht et al., 2018).

An alternative approach is adapting the network parameters directly to the test samples
(Sun et al., 2020; Karani et al., 2021). Similarly, our method does not need to simulate test
distribution shifts, as it automatically adapts the segmentor to the individual test instances.
Thus, our approach can be assumed to perform one-sample unsupervised domain adaptation
on the fly. Notice also that, compared to standard domain adaptation techniques, Test-time
Training has the advantage that it does not become ill-defined when there is only one sample
from the target domain and does not require the source data during test-time training.

2.3 Shape Priors in Deep Learning for Medical Segmentation

In the past, several methods have introduced shape priors into segmentation models (Nos-
rati and Hamarneh, 2016; Jurdi et al., 2020) in the form of penalties (Kervadec et al., 2019;
Clough et al., 2020; Jurdi et al., 2021), atlases (Dalca et al., 2019), autoencoders (Oktay
et al., 2017; Dalca et al., 2018), post-processing operations (Painchaud et al., 2019; Larraz-
abal et al., 2020), and adversarial learning (Yi et al., 2019; Valvano et al., 2021b). Thanks
to their flexibility, GANs are a popular way of introducing data-driven shape priors (Yi
et al., 2019), with the advantage of learning the prior while also optimising the segmentor.

2.4 Re-using Adversarial Discriminators

Pre-trained discriminators have been re-used to navigate the generator’s latent space Liu
et al. (2020), as anomaly detectors (Zenati et al., 2018; Ngo et al., 2019), or as features
extractors for transfer learning (Radford et al., 2015; Donahue et al., 2017; Mao et al.,
2019). To the best of our knowledge, no prior work uses them to detect test time segmentor
mistakes or to fine-tune pre-trained segmentors at inference.

3. Proposed Method

Below, we first provide an overview of our method. Then, we describe the challenges of re-
using adversarial discriminators at inference, suggesting possible solutions to address them.
Lastly, we detail model architecture, training, and the re-use of discriminators at test time.
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Figure 2: We re-use adversarial discriminators to correct segmentation mistakes at infer-
ence. As thoroughly discussed in Section 3.2, crucial to the method success is
training stable and re-usable discriminators. At inference, we tune a shallow
adaptor Ω on each test sample x independently, until predictions ỹ satisfy the
adversarial shape prior. We only need one sample for fine-tuning.

Notation. We use capital Greek letters to denote functions Φ, italic lowercase for scalars
s, and bold lowercase for 2D images x ∈ Rh×w, being h,w ∈ N image height and width.

3.1 Method Overview

As we summarise in Fig. 2, to segment an image we process it through a small adaptor Ω and
a subsequent segmentor Σ. When annotations are available, we train both the adaptor and
segmentor to minimise a supervised cost. For unlabelled images, we instead optimise them
based on an adversarial cost. Meanwhile, we train an adversarial discriminator to discern
real and predicted segmentation masks. At inference, we fine-tune the adaptor Ω on each
test sample, leveraging only the (unsupervised) adversarial loss to increase performance.

Note that developing novel segmentors and adaptors is not our scope. Thus, we use
previously developed architectures that have already shown success in segmentation tasks.
On the contrary, a major contribution of this work is identifying the crucial challenges
behind re-using adversarial discriminators at inference and suggesting possible solutions to
overcome them.

3.2 Re-usable Discriminators: Challenges and Solutions

3.2.1 Challenge 1: Avoid Overfitting and Catastrophic Forgetting

Re-usable discriminators ∆ must not overfit nor catastrophically forget. Otherwise, their
predictions at test time will not be reliable. Ensuring this condition holds is challenging
because GANs can easily memorise data if trained for too long (Nagarajan et al., 2018).1

Moreover, once the segmentor’s training has converged (Shrivastava et al., 2017), the dis-
criminator may forget how unrealistic segmentation masks look like. In these cases, although
∆ may work well at training, it would not generalise on test data, as we explain below.

1. Notice that memorisation can also happen just in the discriminator. In fact, contrarily to the segmentors,
there is no supervised cost to regularise the discriminator’s training. We show how to detect memorisation
from the losses in Appendix A.
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At convergence, a properly trained segmentor Σ predicts realistic segmentation masks.
Thus, we stop training of standard GANs while optimising ∆ to tell apart real from more
and more real-looking masks. During the latest stages of training, this produces ambiguous
training signals for the discriminator, which consistently receives real-looking inputs but is
trained to label them as real half the time, as fake the other half. Since the discriminator loss
will encourage ∆ to classify realistic masks as fake (even if it was the segmentor to generate
them), the training gradients will become unreliable. At that point, the discriminator
training becomes unstable, and ∆ collapses to one of these cases: i) always predicting the
equilibrium point (which in vanilla GANs is the number 0.5, equidistant from the labels
real : 1, fake: 0) but still able of detecting unrealistic images; ii) predicting the equilibrium
point independently of the input image, forgetting what fake samples look like (Shrivastava
et al., 2017; Kim et al., 2018); or iii) memorising the real masks (which, differently from the
generated ones, appear unchanged since the beginning of training) and always classifying
them as real, while classifying any other input as fake. It is crucial to prevent the last two
behaviours (ii) and iii)) to have a re-usable discriminator. Thus, we use:

• Fake anchors : We want to expose the discriminator to unrealistic masks (labelled as
fake) until the end of training. In particular, we train ∆ using real masks y, predicted
masks ỹ, and corrupted masks ycorr. We obtain ycorr by randomly swapping squared
patches within the image2 and adding binary noise to the real masks, as this proved to
be a fast and effective strategy to learn robust shape priors in autoencoders (Karani
et al., 2021). While, towards the end of the training, the discriminator may not
distinguish y from the real-looking ỹ, the exposure to ycorr will prevent forgetting
how unrealistic masks look like, ensuring informative training gradients.3

3.2.2 Challenge 2: Ensuring Stability

An additional challenge is to train stable discriminators, which do not change much during
the last training epochs. In other words, we want to make oscillations of the discriminator
loss as small as possible. This is necessary because we typically stop training using early
stopping criteria on the segmentor loss. Therefore, we want to promote the optimisation of
Lipschitz smooth discriminators, avoiding suddenly big gradient updates (which make the
training loss oscillate). 4

Hence, we limit the risk of having discriminators residing in sharp local minima, which
are well known to generalise worse (Keskar et al., 2017), using:

2. We use patches having size equal to 10% of the image size.
3. Concurrent to our work, Sinha et al. (2021) recently introduced a similar idea, named Negative Data

Augmentation, which improved the training of GAN generators. However, differently from Sinha et al.
(2021), we highlight that our scope is to build a stable discriminator, which can be re-used at inference.

4. Lipschitz smooth discriminators have better stability (Chu et al., 2020) and, thus, their training gradients
are bounded. Hence: i) abrupt changes in their weight values are unlikely to happen, and ii) the
discriminator behaviour does not change abruptly across epochs, which is crucial at convergence. In
fact, by comparing different discriminators obtained between subsequent epochs (i.e. different statistical
realization of the adversarial discriminator, having different weights), we find similar behaviours, reducing
the influence of eschewing discriminator-based early stopping criteria.
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• Smoothness constraints: We use Spectral Normalisation (Miyato et al., 2018), tanh
activations, and Gradient Penalty (Gulrajani et al., 2017) to encourage discriminator
smoothness (Chu et al., 2020).

• Discriminator data augmentation: We use Instance Noise (Sønderby et al., 2017;
Müller et al., 2019) and random roto-translations, to map similar inputs to the same
prediction label. We generate noise sampling from a Normal distribution having zero
mean and 0.1 standard deviation. We rotate images between 0 ÷ π/2 and translate
them up to 10% of image pixels on both vertical and horizontal axes.

3.3 Architectures and Training Objectives

Given an input image x, we first pass it through the adaptor Ω and obtain x′ = Ω(x).
Then, we use the segmentor Σ to predict a segmentation mask ỹ = Σ(x′) = Σ ◦ Ω(x).

We parametrised Ω as the adaptor introduced by Karani et al. (2021). Such an adaptor
consists in 3 convolutional layers with 16 3 × 3 kernels and activation Φ(T) = e−T2/s2 ,
where T is an input tensor and s a trainable scaling parameter, randomly initialised and
optimised at test-time. Instead, for the segmentor we use a UNet (Ronneberger et al., 2015)
with batch normalisation (Ioffe and Szegedy, 2015).

For the pairs of annotated data (x, y) in the training set, we minimise the weighted
cross-entropy loss between the real mask y and the predicted one ỹ:

L(Ω,Σ) = −
∑c

i=1
wi · yi log(ỹi), (1)

where, given the number of classes c and the class index i, we address the class imbalance
problem with the scaling factor wi. We compute wi = 1− ni/ntot as the ratio between the
number of pixels ni having label i and the total number of pixels ntot.

The discriminator ∆ is a convolutional encoder, processing an input mask through 5
convolutional layers with 4 × 4 filters. The number of filters follows the series: 32, 64,
128, 256, 512. After the first two layers, we use a stride of 2 to downsample the extracted
features maps. As discussed in Section 3.2, we increase discriminator smoothness through
spectral normalisation layers and tanh activations. Lastly, we use a fully-connected layer
to integrate high-level representation and produce a scalar linear output, used to compute
the adversarial loss adapted from Mao et al. (2018):

min
∆

{

VLS(∆) =
1

2
Ey∼p(y)[(∆(y)− 1)2] +

1

2
Ex∼p(x)[(∆(Σ ◦ Ω(x)) + 1)2]

}

min
Ω,Σ

{

VLS(Ω,Σ) =
1

2
Ex∼p(x)[(∆(Σ ◦ Ω(x)))2]

}

,

(2)

where +1 and −1 are the labels for real and fake masks, respectively. For training, we
alternately minimise Eq. 1 on a batch of labelled images and Eq. 2 on a batch of unpaired
images and unpaired masks. To avoid the adversarial loss from prevailing over the supervised
cost, we rescale VLS(Ω,Σ) by multiplying it by a dynamic weighting value a = 0.1· ‖L(Ω,Σ)‖

‖VLS(Ω,Σ)‖ ,

as in Valvano et al. (2021b). Hence, we ensure to expose the segmentor to a supervised
cost that is always one order of magnitude larger than the adversarial cost, which can judge
predictions only qualitatively. We minimise losses with Adam (Kingma and Ba, 2015),

7



Valvano, Leo and Tsaftaris

learning rate: 10−4, and batch size: 12. We end training when the supervised loss stops
decreasing on a validation set.

3.4 Adversarial Test-Time Training

3.4.1 Adapting Ω

At test time, we only fine-tune the first few convolutional layers of the whole model: i.e. the
three layers of the adaptor Ω described in Section 3.3. Our choice is motivated by Asano
et al. (2020) observations that the early layers are the most suited for one-shot learning,
and is similar to that of Karani et al. (2021). Leaving the deeper layers of Σ unchanged, we
let the model adapt only to changes at lower abstraction levels, limiting its flexibility and
preventing trivial solutions. Thus, given a test sample x, we tune a shallow convolutional
residual block (the adaptor Ω) in front of the segmentor by minimising VLS(Ω|Σ,x) for niter
iterations. The number of iterations niter has an upper bound and is determined on each
specific test sample independently. After tuning Ω, the input to the segmentor becomes an
augmented version of x, which can be more easily classified.

3.4.2 Setting the Number of Test-time Iterations

At inference, our method needs niter forward and backward passes to correct a segmenta-
tion.5 We compute an optimal niter for each test sample, stopping TTT when the adversarial
loss on the predicted mask has not decreased for the last 200 steps, or when TTT exceeds a
maximum iteration number nmax

iter = 1000. After stopping TTT, we consider the prediction
associated with the minimum adversarial loss as the best one.

4. Experimental Setup

4.1 Data

We consider four medical datasets acquired using a variety of MRI scanners and acquisition
protocols: cardiac data of ACDC (Bernard et al., 2018), M&Ms (Campello et al., 2021),
and LVSC (Suinesiaputra et al., 2014); and the abdominal organ data of CHAOS (Kavur
et al., 2021). ACDC and M&Ms contain annotations for right ventricle, left ventricle and
left myocardium, while LVSC only has myocardium masks. CHAOS contains labels for
the two kidneys, the liver, and the spleen. We use specific datasets based on two different
learning scenarios, which we describe below:

• Identifiable Distribution Shift: We use ACDC and M&Ms data to model test-time
distribution shifts that we can identify as changes in the MRI acquisition scanner. For
ACDC, we build the training and validation set using only data acquired from 1.5T
scanners; then, we test the model on 3T MRI scans. In the following, we refer to
this dataset setup as ACDC1.5→3T. For M&Ms, we consider training and validation
sets containing data from 3 out of the four available MRI vendors and a test set
constructed using data from the held-out vendor. As a result, we can be sure that
there is a distribution shift between training and test data in both ACDC1.5→3T and

5. Despite being slower than standard inference, where each image only requires one forward pass, we
observe just a small temporal overhead in the model: ∼10÷20s/patient on a TITAN Xp GPU.
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M&Ms. In both cases, we maintain a 2:1 ratio between the number of samples in the
training and validation sets.

• Non-identifiable Distribution Shift: We consider randomly sampled data from
ACDC, LVSC, and CHAOS, where we cannot say in advance if there is a change
in distribution between train and test data. We consider a semi-supervised learning
scenario, where only a portion of training data is annotated. This setup is of partic-
ular interest when collecting large-scale annotated datasets is not possible, and small
labelled training sets do not accurately represent the test distribution. To prevent
information leakage, we divide datasets by patients and use groups of 40%-20%-40%
of patients for training, validation, and test set, respectively. In ACDC and LVSC
training sets, we only consider annotations for one fourth of the training subjects (10
patients); in CHAOS, only one half (4 patients). We treat the remaining data as
unpaired and use them for adversarial learning (Eq. 2). Despite being drawn from the
same distribution (i.e. the entire dataset), the small amount of training data may not
fully represent the data distribution. Hence, although we cannot identify distribution
shifts a priori, they may still exist and lead to performance drop (Recht et al., 2018).

After defining train, validation and test sets, we pre-process data as follows:

• ACDC1.5→3T andACDC: we resample images to the average resolution of 1.51mm2,
and crop or pad them to 224×224 pixel size. Lastly, we normalise data by subtracting
the patient-specific median and dividing by its interquartile range (IQR).

• M&Ms: after resampling the images to the average resolution of 1.25mm2, we
crop/pad them to 224× 224 pixels. We normalise images by subtracting the patient-
specific median and dividing by the IQR.

• LVSC: we resample images to the average resolution of 1.45mm2, and then crop or
pad them to 224 × 224 pixel size. Finally, we normalise images by subtracting the
patient-specific median and dividing by the IQR.

• CHAOS: we test our method on the T1 in-phase images, after resampling them to
1.89mm2, normalising and cropping them to 192× 192 pixel size.

4.2 Evaluation Protocol

For all the experiments, we report results of 3-fold cross-validation. We measure perfor-
mance in terms of segmentation quality, using Dice score, IoU score, and Hausdorff distance
to compare the predicted segmentation masks with the ground truth labels available in the
test sets. We assess statistical significance with the bootstrapped t-test. We use significance
at p ≤ 0.05 or p ≤ 0.01 denoted by one (*) or two (**) asterisks, respectively.

5. Experiments and Discussion

We present and discuss the performance of our method in various experimental settings.
First, Section 5.1 presents the advantage of the proposed approach during inference: either
under identifiable or non-identifiable distribution shifts. In Section 5.2, we highlight the
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Dataset Adv. TTT Dice (↑) IoU (↑)
Hausdorff

(↓)
Distance

ACDC1.5→3T
before 77.009 68.909 5.202
after 78.408** 70.408** 5.002**

M&Ms
before 82.008 75.608 4.403
after 82.108* 75.708* 4.303

ACDC
before 74.210 66.110 7.106
after 75.009** 67.110** 6.905

CHAOS
before 74.012 70.312 9.104
after 74.312** 70.512** 9.104

LVSC
before 62.615 53.114 5.804
after 65.912** 56.212** 5.703

Table 1: Dice (↑), IoU (↑) and Hausdorff distance (↓) obtained before and after tuning
the segmentor on the individual test instances. Arrows show metric improvement
direction; numbers are the average performance, with standard deviation as sub-
script; best results are in bold. Observe how adversarial Test-time Training always
improves performance (bootstrapped t-test, ∗p < 0.05, ∗∗p < 0.01).

differences between adversarial TTT and post-processing operations, reporting also com-
plementary performance gains. After that, Section 5.3 shows model potential for Online
Continual Learning. Lastly, Section 5.4 discusses a limitation of the approach and defines
a possible solution to overcome it building on a causal perspective: we show that includ-
ing losses on image self-reconstruction during Test-time Training makes adaptation more
reliable and faster.

5.1 Adversarial Test-time Training Under Distribution Shifts

We start with a qualitative example of test-time adaptation in Fig. 3, showing that it helps
fix prediction mistakes. As can be seen on all datasets, our method corrects unrealistic
masks by removing scattered false positives and segmentation holes.

In Table 1, we report segmentation performance before and after Test-time Training. We
find performance improvements across metrics and datasets both in terms of metric average
and spread. The only case where differences are not statistically significant is on CHAOS
data, where the test set has a small number of samples (8 patients), and distributions are
broad. Nevertheless, we observe empirical improvements in terms of Dice and IoU scores on
CHAOS, too. From these results, we argue that adversarial TTT could lead to substantial
benefits for medical applications, where systems must be robust and avoid trivial mistakes.

In Fig. 4, we compare our method with one using a shape prior separately learned by a
DAE (i.e. TTANN, Karani et al. (2021)). We compare the performance increases obtained
through adversarial TTT vs using TTANN, and discuss the pros and cons of driving the
adaptation using a mask discriminator vs a DAE. Our experiments show advantages in using
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Prediction

After TTTBefore TTT
TrueInputDataset

ACDC

LVSC

CHAOS

ACDC1.5T³3T

M & Ms

Figure 3: We show examples of prediction mistakes and their corrections after the adver-
sarial Test-time Training. We group pairs of examples by dataset. As can be
observed, the segmentor corrects the initially erroneous segmentation masks to
make them realistic, according to the learned adversarial shape prior.
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Figure 4: Adversarial TTT has competitive performance with TTANN (Karani et al., 2021),
and it has the advantage of re-using an already available GAN component. Bar
plots report average performance and standard errors. Stars on top of the bar
plots show if differences between adversarial TTT and TTANN are statistically
significant (bootstrapped t-test, ∗p < 0.05, ∗∗p < 0.01).

our method. Although performance gains appear small and TTANN performs better on
M&Ms data, using adversarial TTT leads to statistically significant improvements in most
of the cases. Probably, the performance increase derives from the optimisation procedure,
as we train the discriminator to detect the segmentor mistakes. On the contrary, DAEs are
optimised independently of the segmentor by only artificially simulating prediction mistakes.
Thus, DAEs may have never seen specific mask corruptions during training, as also observed
by Larrazabal et al. (2020).

Ablation Study: In Table 2 we show results ablating the adaptor, the smoothness con-
straints and the proposed fake anchors regularisation on the model. As shown, the tech-
niques improve training and make the adversarial shape prior stronger. Consequently: i) the
adversarial loss trains a better segmentor, and ii) the re-usable discriminator can increase
test-time performance. For comparison, training a simple UNet on the same data leads to
an average Dice score of 70.1 (standard deviation of 13). We also report an ablation study
comparing the contributions of the each type of fake anchors regulariser in Table 3. In this
experiment, we trained the model using no fake anchors regulariser, only patch swap, only
binary noise, or both. After training, we evaluated the segmentor on the test set before
TTT. As shown in the table, both randomly swapping segmentation patches and adding
binary noise contribute to train better segmentors, and TTT improves upon it further.

5.2 Combining Adversarial TTT with Post-processing

Adversarial TTT should not be confused with post-processing operations because it does
not modify the prediction independent of the input. Indeed, our approach lets the model
adapt to the input image. Moreover, contrary to standard post-processing, our method
has the advantage that it can also learn from a continuous stream of data, as we will show
in the next section. However, this does not mean that post-processing cannot follow after
test-time training, which we now explore.
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Adaptor Ω
Smoothness Fake Adversarial

Performance
Constraints Anchors TTT

Ours X X X X 75.009
#1 X X X 74.210
#2 X X 72.812
#3 X 72.712
#4 70.012

Table 2: Ablation Study. We compare the performance of our method (Ours) after remov-
ing: adversarial Test-time Training (ablation #1), the proposed regularisation
technique (fake anchors, #2), the smoothness constraints discussed in Section 3.2
(ablation #3), and the adaptor (standard GAN, #4). Performance is in terms of
average Dice score on ACDC data, with standard deviation as subscript.

Figure 5: Compatibility with post-processing techniques (PostDAE and CRF). Bar plots
report average performance and standard errors.

As examples, we consider two popular post-processing techniques. First, we examine
post-processing with Conditional Random Fields (CRF), as in the DeepLab framework
(Chen et al., 2017). Note that CRF adapts the predicted mask to the image, assigning
nearby pixels with similar colours to the same semantic class. Our method, instead, adapts
the model to the image. Second, we consider correcting the segmentation mistakes with
a Denoising Autoencoder, as in PostDAE (Larrazabal et al., 2020). This method maps
corrupted masks on a previously learned manifold of realistic masks without considering
the associated images.

None Patch Swap Binary Noise Both Both + Adversarial TTT

Performance 72.812 73.211 72.910 74.210 75.009

Table 3: Ablation study on the fake anchors regularisers. Performance are in terms of aver-
age Dice score, with standard deviation as subscript, on the ACDC test set. Both
patch swapping and adding binary noise contribute to train better segmentors.
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Figure 6: Effect of increasing the number of patients used to adapt the model in Online
Continual Learning. For this experiment, we continually adapt the model on k
test patients, and then perform standard inference on the remaining test patients.
We span k between 0 (i.e. no adaptation) and 40 (i.e. continual learning on
the whole test set). As new data become available, the model adapts to new
distribution shifts and improves overall test performance.

Fig. 5 shows that our method can be combined with both techniques and, sometimes,
the combination can improve performance. We find that PostDAE does not always help:
probably because adversarial TTT already adapts the model using a data-driven shape prior
(via the discriminator) and the additional DAE may be uninformative or even harmful. On
the contrary, CRF increases performance because it introduces a different type of prior
in the model (Zheng et al., 2015), from which the segmentor can benefit (similar to what
happens in model ensembling).

5.3 Online Continual Learning of Adversarial TTT

We now experiment with the possibility of using our method for Online Continual Learning
(Delange et al., 2021; Mai et al., 2021), i.e. learning from a continuous stream of non-
stationary data (in our case, data affected by distribution shifts). Learning from new data,
the model performance should gradually increase. Moreover, as the model gets better on
the test distribution, the need for TTT should decrease, making Test-time Training faster.

We conduct experiments for both ACDC and ACDC1.5→3T, and report results in Fig-
ure 6 and Table 4. In this continual learning scenario, we do not restart TTT from zero
when testing new data, but we continue the learning process from one patient in the test
set to another. For each patient we perform the adaptation only once.

Overall, we find that the segmentor benefits from the continuous stream of test data,
with performance increasing from one patient to another (Fig. 6), achieving even higher
scores than using adversarial TTT on each test subject separately (Table 4).

More interestingly, we find that the average number of TTT steps needed for tuning the
adaptor in Online Continual Learning decreases from 322 to 315 on ACDC data and from 120
to 114 on ACDC1.5→3T. This reduced number of steps suggests that gradually introducing
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Dataset Adv. TTT Continual Dice (↑) IoU (↑)
Hausdorff

(↓)
Distance

ACDC
7 7 74.210 66.110 7.105
X 7 75.009 67.110 6.905
X X 75.109 67.209 6.905

ACDC1.5→3T

7 7 77.009 68.909 5.202
X 7 78.408 70.408 5.002
X X 78.608 70.608 4.902

Table 4: Online Continual Learning. Our model can continuously learn from a stream of
test data, gradually improving segmentation performance. Numbers are average
performance, with standard deviation as subscript. Best results in bold.

new knowledge into the model lessens the need for adaptation, and the segmentor might be
able to do without TTT after a while.

5.4 Towards Causal Test-time Training

We experimentally observed that, in few and rare cases, adversarial TTT can make seg-
mentation worse (see such an example in Fig. 7). This happens because the discriminator
learns to approximate the shape prior characterised by the probability distribution p(y)
rather than the joint distribution p(x,y). Thus, the discriminator will not penalise a real-
istic mask even when it is the wrong segmentation for the given image (see Fig. 7). Hence,
it is natural to wonder whether considering both the image and the segmentation mask to
drive the adaptation process may provide additional context and help Test-time Training.
We emphasise that this problem also exists in TTANN (Karani et al., 2021) and in all the
methods learning the marginal p(y) instead of the joint distribution of images and masks.

As we discuss in Appendix B, we can give a causal interpretation to this problem,
highlighting that image-related information would make Test-time Training causal and more
effective. Below, we investigate if we can include such information and how it affects TTT.

For our experiments, we consider a method designed for semi-supervised segmentation
learning: SDNet (Chartsias et al., 2019), which we describe schematically in Fig. 8. SDNet
disentangles images using an encoder to find latent representations regarding the image
content (anatomy) and style (modality), and a decoder to reconstruct the input images.
Task specific networks learn to predict segmentations from the content latent, using either
supervised losses or adversarial costs. As such, SDNet learns the joint distribution between
images and masks (for additional details: see Appendix B), making SDNet a perfect test
bench for evaluating both the use of discriminators and image reconstruction for TTT.

We explore if reconstructing the test sample at inference adds benefits during adaptation
in terms of performance and adaptation speed. We include an adaptor Ω in front of SDNet
(as shown in Fig. 8). Then, we train the full model according to the SDNet training
objectives, which include an adversarial loss LA and a reconstruction loss LR.
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TrueInput

Prediction

After TTTBefore TTT

Figure 7: Since the information contained in the predicted mask is limited, the discriminator
does not penalise realistic but wrong predictions (top row). Sometimes, it may
even encourage to make bigger mistakes (bottom row).
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x̃2 
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j p(y)
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+

Figure 8: The proposed approach in a causal setting. We add the adaptor Ω in front of
SDNet (Chartsias et al., 2019) to transform an image x ∼ p(x) into its adapted
version x′. During training, the SDNet encoder extracts the segmentation mask
ỹ and a residual representation R. A decoder uses both of them to reconstruct
the adapted image, predicting x̃′ ≈ x′. Meanwhile, a mask discriminator learns
to tell apart real segmentation masks from the predicted ones. At inference, we
perform Test-time Training and adapt Ω to minimise the sum of the reconstruc-
tion cost (computed comparing x′ and x̃′) and the adversarial loss (computed on
the predicted ỹ according to Eq. 2).

The adversarial loss LA is the same as defined in Eq. 2, and we also follow the precautions
discussed in Section 3.2. We leave the reconstruction term LR as in the original SDNet
framework, to minimise the mean absolute error between an image and its reconstruction.
However, we train the model to reconstruct the adapted image x′ = Ω(x) rather than the
input x. We motivate this specific change by observing that under a distribution shift
between training and inference data, the SDNet decoder may not be able to reconstruct the

16



Re-using Adversarial Mask Discriminators for Test-time Training

Figure 9: We compare the performance of: a GAN before and after adversarial Test-time
Training; the SDNet model (discussed in Section 5.4); the SDNet after Test-time
Training performed minimising only a reconstruction cost (“+ Rec. TTT”), only
an adversarial cost (“+ Adv. TTT”) and their sum (“+ Adv. & Rec. TTT”).
Bar plots report average performance and standard errors.

test image correctly. Instead, after tuning Ω to the test image, the SDNet can effectively
reconstruct the adapted image x′.6 We leave the rest of the SDNet model unchanged.

During inference, we fix the SDNet weights, and do Test-time Training to tune the
adaptor on each sample. We set the number of TTT steps niter as described in Section 3.4,
using the adaptation loss described in three different settings:

• “SDNet + Rec. TTT”, where we do TTT using only the reconstruction loss LR;

• “SDNet + Adv. TTT”, where we drive adaptation using only the adversarial loss LA;

• “SDNet + Adv. & Rec. TTT”, where we use the sum of the adversarial and the
reconstruction cost Ltot = LA +LR, leading to a consistent causal-driven adaptation.

For the experiments, we considered both the case of clearly identifiable distribution
shifts (ACDC1.5→3T data) and non-identifiable shifts (ACDC data). We report per-dataset
results in terms of segmentation quality in Fig. 9.

From this figure, we observe that all three types of TTT improve SDNet performance,
confirming that the framework is general and widely applicable. In fact, both the adversarial
discriminator and the decoder used to reconstruct the image provide useful priors to drive
the adaptation process. There is only one experimental exception: the Hausdorff distance
of “SDNet + Adv. TTT” on ACDC1.5→3T data. In this case, while Dice and IoU scores
increase, the Hausdorff distance worsens. We believe this happens because “SDNet + Adv.
TTT” makes more errors in the most apical and basal slices of the heart7: a behaviour that
we also observe for “GAN” and “GAN + Adv. TTT”, where Hausdorff distances are high.

6. An alternative to reconstructing x
′ would be to introduce an “inverted” adaptor Ω−1 at the decoder

output. However, this would require extra computational cost and reconstructing x
′ is simpler.

7. By definition, the Hausdorff distance between two binary masks has the maximum possible value (i.e.
the image size) when one of the two masks is empty. In this case, even one missed or one extra pixel in
the apical and basal slices leads to high values of the metric, decreasing performance.
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Analysing the contribution of the reconstruction loss in detail, we observe that it mainly
helps when optimising the model on the training data (i.e. before Test-time Training). In
fact, if we compare the performance of SDNet with that of a GAN before TTT (“SDNet”
vs “GAN”, in Fig. 9), we find a big improvement in all the metrics. On the contrary, when
we analyse the effect of LR during Test-time Training, we find that it only slightly affects
the metrics (compare “SDNet + Adv. TTT” vs “SDNet + Adv. & Rec. TTT”).

Instead, including LR during TTT has a bigger impact on the test-time training speed.
In fact, we find that the number of TTT iterations needed for convergence halves. Specifi-
cally, using only the adversarial cost during TTT, the average optimal niter is 111 on ACDC,
and 206 on ACDC1.5→3T data. By adding also the reconstruction term, the average number
of TTT steps becomes 66 on ACDC and 119 on ACDC1.5→3T. Our results are also in line
with recent findings arguing that correct causal structures adapt faster (Bengio et al., 2020).

These experiments highlight that causal TTT, using the causal structure herein, leads
to marginal improvements in segmentation quality, but it makes adaptation to the test
samples considerably faster.

6. Conclusion

In this work, we suggest re-using adversarial discriminators at inference. First, we identify
simple design assumptions that must be satisfied to make discriminators useful once training
is complete. Then, we show how to use discriminators to detect and correct segmentation
mistakes on the test data. The proposed approach is simple. compatible with common
post-processing techniques, and it increases test-time performance on the most challenging
images. Our approach also benefits from continual learning, making test-time inference
gradually more accurate and faster. Lastly, we showed that reconstruction losses could
complement mask discriminators and improve the inference speed of our model.

We believe that learning without supervision on new test data is a promising research
avenue. However, while this works only touches upon the potential use of discriminators and
their combination with other components at inference time, there are still several challenges
to solve. First, Test-time Training methods rely on gradient descent to fine-tune the model
on the test data. While effective, this solution slows down model prediction time. Hence,
future work should focus on strategies to make TTT faster, increasing parallelisation and
possibly adapting the model using just a single training step. For example, Bartler et al.
(2021) have recently explored the combination of Meta-Learning techniques with TTT, to
make adaptation faster. Furthermore, when moving towards continual learning, alleviating
the risk of forgetting previous experience is crucial. To this end, it would be interesting
to combine our method with approaches aiming to solve these challenges, such as Elastic
Weight Consolidation (Kirkpatrick et al., 2017).

More generally, re-using adversarial discriminators to fix generator mistakes may open
several research opportunities, even outside image segmentation. Thanks to their flexibility
and the ability to learn data-driven losses, GANs have been widely adopted in medical
imaging, from domain adaptation to image synthesis tasks (Yi et al., 2019). In this context,
we believe that improved architectures and regularisation techniques (Kurach et al., 2019;
Chu et al., 2020) will make adversarial networks even more popular. Thus, training stable
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and re-usable discriminators opens opportunities for re-using flexible data-driven losses at
test time and make inference better.
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Appendix A. Discriminator: Convergence and Memorisation

During adversarial training, we optimise the segmentor to produce realistic masks, which
the discriminator cannot distinguish from the real ones. At convergence, the discriminator
can either reach an equilibrium stage or collapse.

Below, we show empirical examples of the training and validation losses for the GAN
discriminator ∆. For these experiments, we use a Least-square GAN (Mao et al., 2018),
whose discriminator loss to minimise is:

VLS(∆) =
1

2
Ey∼Y [(∆(y)− 1)2]
︸ ︷︷ ︸

loss on real samples

+
1

2
Ex∼X [(∆(Σ(x)) + 1)2]
︸ ︷︷ ︸

loss on fake samples

(3)

where +1 and −1 are the labels for real and fake (generated) images, respectively.

We report examples of convergence modes in Fig. 10 and Fig. 11. On the left side: losses
on the training set; on the right: losses on the validation set. Observe that − despite the
single loss components have different values − the total loss VLS(∆) on the validation set
is the same in both cases.
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Figure 10: At convergence, the discriminator reaches an equilibrium where it always pre-
dicts the value 0, equidistant from the real and the fake labels. Thus, losses
for real and fake masks converge to the equilibrium value 1.0 in both train and
validation.

Appendix B. Causal Test-time Training

Causal machine learning is recently gaining considerable attention in medical imaging (Cas-
tro et al., 2020) because it could identify the best suited approaches to solve a specific task
(Schölkopf et al., 2013; Castro et al., 2020), or make learning faster (Bengio et al., 2020).

In our model, we optimise the segmentation modules of a GAN (Ω and Σ, described
in Section 3.1) to approximate the conditional distribution p(y|x), and the discriminator
to learn the marginal p(y). Training this type of GAN has practical advantages because
the discriminator regularises the segmentor and allows to use unlabelled data for training.
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Figure 11: At convergence, the discriminator shows signals of memorisation. The discrim-
inator memorises the real training images, and it predicts the label fake (i.e.
the value -1) for any other case. During validation, the fake images are still
classified correctly, while the real ones are classified as fake and the associated
loss converges to the value of 2.0.

However, tuning the adaptor based only on the adversarial loss may be considered as driving
the adaptation using an anti-causal model, while the process is instead causal. In other
terms, it is an image that causes the predicted mask because experts draw masks on top
of the images, and not vice versa (Castro et al., 2020). Instead, GANs whose discriminator
only receives segmentation masks as input would penalise the segmentor without considering
the image causing that mask.

Thus, from a causal perspective, our approach is non-optimal. To capture the causal
structure better and update the model parameters, we should also consider the inverse
conditional probability p(x|y), which would improve the approximation p(y|x) (i.e. the
segmentation modules Ω and Σ) according to Bayes theorem:

p(y|x) = p(x|y)
p(y)

p(x)
. (4)

Hence, to obtain a more coherent description, we should learn an inverse function map-
ping the masks to their respective images: p(x|y). Unfortunately, segmentation masks do
not contain all the information needed to go from y to x, as one mask can be associated
to many different images, also known as the one-to-many problem. Since this inversion is
not possible, rather than learning the two components p(x|y) and p(y) separately (Eq. 4),
one may attempt to directly learn the joint distribution p(x,y) = p(x|y)p(y). To have
this type of model, we can optimise the discriminator ∆ providing input pairs (x,y) rather
than just unpaired masks. As a result, ∆ would implicitly learn to approximate the joint
probability distribution of image-mask pairs, rather than the distribution of masks, and
we would obtain a coherent causal description. However, this approach also has several
problems. In the first place, the discriminator would be subject to pixel-intensity distri-
bution shifts of x: thus, we would move our problem from adapting Ω to the test images,
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to the problem of adapting ∆. Moreover, since the discriminator would need paired data
for training, we would not be able to use the framework in semi-supervised settings where
we have unpaired images and unpaired segmentation masks (such as in the scenarios of
non-identifiable distribution shift, described in Section 4.1).8

Another alternative to learning p(x|y) is to substitute it with a proxy distribution.
For example, we could learn p(x|y,R), where R is a residual representation containing
complementary information that is not present in y and is necessary to go from a mask y to
the respective image x, breaking the one-to-many/many-to-one problem described above.
In this case, we would establish the relationship:

p(y|x) ↔ p(x|y,R)
p(y)

p(x)
. (5)

As discussed in the paper, an example of such a model is SDNet (Chartsias et al., 2019),
which uses the extracted mask and its residuals to reconstruct the image9, while also having
an adversarial discriminator learning p(y).

8. For completeness, we also conducted an experiment in fully-supervised learning, where all the training

images are associated with a segmentation mask and where the discriminator can learn the joint distri-

bution. In this case, we observed that the discriminator was more prone to overfitting the training data,

and its generalisation under distribution shifts got worse.

9. To be more precise, this holds assuming that the “anatomy encoder” of SDNet performs a segmentation

task and extracts y within the anatomical representation of a patient. For the purpose of our experiments,

we assume it is a reasonable approximation.

27


	Introduction
	Related Work
	Learning from Test Samples
	Tackling Distribution Shifts
	Shape Priors in Deep Learning for Medical Segmentation
	Re-using Adversarial Discriminators

	Proposed Method
	Method Overview
	Re-usable Discriminators: Challenges and Solutions
	Challenge 1: Avoid Overfitting and Catastrophic Forgetting
	Challenge 2: Ensuring Stability

	Architectures and Training Objectives
	Adversarial Test-Time Training
	Adapting w
	Setting the Number of Test-time Iterations


	Experimental Setup
	Data
	Evaluation Protocol

	Experiments and Discussion
	Adversarial Test-time Training Under Distribution Shifts
	Combining Adversarial TTT with Post-processing
	Online Continual Learning of Adversarial TTT
	Towards Causal Test-time Training

	Conclusion

