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Abstract

Deep learning based techniques achieve state-of-the-art results in a wide range of image
reconstruction tasks like compressed sensing. These methods almost always have hyper-
parameters, such as the weight coefficients that balance the different terms in the opti-
mized loss function. The typical approach is to train the model for a hyperparameter
setting determined with some empirical or theoretical justification. Thus, at inference
time, the model can only compute reconstructions corresponding to the pre-determined
hyperparameter values. In this work, we present a hypernetwork-based approach, called
HyperRecon, to train reconstruction models that are agnostic to hyperparameter set-
tings. At inference time, HyperRecon can efficiently produce diverse reconstructions,
which would each correspond to different hyperparameter values. In this framework,
the user is empowered to select the most useful output(s) based on their own judge-
ment. We demonstrate our method in compressed sensing, super-resolution and denoising
tasks, using two large-scale and publicly-available MRI datasets. Our code is available at
https://github.com/alanqrwang/hyperrecon.

Keywords: Image Reconstruction, Deep Learning, Hypernetworks, Hyperparameter tun-
ing, Amortization

1. Introduction

The task of recovering high quality images from noisy or under-sampled measurements, often
referred to as image reconstruction, is of crucial importance in many imaging applications.
Classically, image reconstruction is formulated as an ill-posed inverse problem and solved
by optimizing an instance-based regularized regression loss function (Fessler, 2019). More
recently, deep learning (DL), and in particular supervised learning, has shown promise in
improving over classical methods due to its ability to learn from data and to perform fast
inference (Pal and Rathi, 2021).

The quality of solutions, for both the classical and DL-based techniques, depend heavily
on the loss function that is minimized (Ghodrati et al., 2019; Zhao et al., 2018). Different
loss functions can highlight or suppress varying features or textures in the reconstructions.
A common approach is to minimize a composite loss that is a weighted sum of multiple
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Figure 1: Proposed model. Main reconstruction network (Unet) takes as input the under-
sampled measurement y and outputs reconstruction x̂, while the fully-connected (FC) hy-
pernetwork takes as input the hyperparameter λ and outputs weights ¹ for the reconstruc-
tion network. During training, λ is sampled from a uniform distribution. At test-time, λ
can be interactively selected to efficiently compute reconstructions associated with that λ,
yielding diverse reconstructions.

terms. However, the tuning of the weight hyperparameters is a non-trivial problem, requir-
ing methods such as grid-search, random search, or Bayesian optimization (Frazier, 2018).
Another weakness of existing methods is that once they are tuned and/or trained, they
often produce a single best estimate of the reconstruction that is consistent with the mea-
surements. Thus, any deviation from the conditions that the tool was optimized for means
that the reconstructions can be sub-optimal.

More broadly, there is a lack of interactive and controllable tools that would enable
human users to efficiently consider many reconstructions that are consistent with the mea-
surements (Holzinger, 2016; Xin et al., 2018). Consider the results of the fastMRI Image
Reconstruction Challenge1, which revealed that commonly-used supervised metrics (e.g.
mean-squared-error) do not correlate with the quality of images as judged by radiologists.
We argue that giving users control and choice over possible reconstructions is a human-in-
the-loop approach to mitigate this discrepancy.

In this work, to these ends, we propose a reconstruction strategy that is agnostic to the
hyperparameter values and can efficiently produce reconstructions for a range of settings.
Specifically, our model uses a hypernetwork that takes as input hyperparameter value(s) and
outputs the weights of the reconstruction network. At test-time, arbitrary hyperparameter
values can be provided by the user and corresponding reconstructions will be efficiently
computed via a forward-pass through the reconstruction network. Thus, our method is
capable of producing a range of reconstructions corresponding to different hyperparameter

1. https://ai.facebook.com/blog/results-of-the-first-fastmri-image-reconstruction-challenge
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values, instead of a single reconstruction associated with a single hyperparameter setting.
The user can, in turn, interactively view and select from this set of possible solutions, for
use in downstream tasks.

Our method is applicable to any loss function where multiple terms need to be weighed.
To demonstrate this, we perform experiments on two classes of loss functions in the re-
construction setting: supervised learning and amortized optimization. We experiment on
three reconstruction tasks (CS-MRI, additive white Gaussian noise (AWGN) image denois-
ing, and image superresolution) using two large-scale publicly available datasets (brain and
knee MRI scans). These experiments highlight our proposed model’s ability to match the
performance of multiple baseline models trained on single settings of the hyperparameters.

This paper builds on our prior conference publication (Wang et al., 2021a), which dealt
with the unsupervised setting where only under-sampled data were available for training.
The present paper further considers the supervised setting, where we assume that we have
access to fully-sampled training data and the primary design choice we are trying to solve
is the weights in a composite loss function. Our contributions are as follows:

• We introduce a method for efficiently generating a range of image reconstructions
using hypernetworks. Our method enables the end user to interactively view and
choose the most useful reconstruction at inference time.

• We analyze several issues and propose solutions to hypernetwork training in the re-
construction setting, including hyperparameter distribution sampling and loss output
scaling. Empirically, these solutions lead to improvement in model performance.

• Using multiple datasets and a variety of reconstruction tasks, we empirically demon-
strate the performance of our proposed model and various improvements on two classes
of loss functions: supervised learning (SL) and amortized optimization (AO).

2. Background

2.1 Inverse Problems for Image Reconstruction

We assume an unobserved (vectorized) image x * C
N is transformed by a forward model

A into a measurement vector y:

y = Ax+ ÷. (1)

Here, N is the number of pixels of the full-resolution grid and ÷ encapsulates unmodeled
effects such as noise. In image denoising, A = I. In image superresolution, A = D, where
D is a down-sampling operator. In single-coil CS-MRI, A = Fu, where Fu * C

M×N is the
under-sampled discrete Fourier operator and M < N .

Classically, inverse problems for image reconstruction are reduced to iteratively mini-
mizing a regularized regression cost function on each collected measurement set (Beck and
Teboulle, 2009; Boyd et al., 2011; Chambolle and Pock, 2011; Combettes and Pesquet, 2009;
Daubechies et al., 2003; Ye et al., 2019).

argmin
x

J(x,y) +
K−1
"

i=1

¼iRi(x) (2)
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The first term, called the data-consistency loss, quantifies the agreement between the mea-
surement vector y and reconstruction. One common choice for J is:

J(x,y) = 'Ax2 y'22 . (3)

The K 2 1 regularization terms Ri(·) are hand-crafted priors which restrict the space of
permissible solutions. A set of hyperparameters {¼1, ..., ¼K−1} weights the competing con-
tributions of the K terms. Common choices for these priors include sparsity-inducing norms
of wavelet coefficients (Figueiredo and Nowak, 2003) and total variation (TV) (Liu et al.,
2018; Hu and Jacob, 2012; Rudin et al., 1992). While considerable research has been dedi-
cated to designing suitable priors, such methods are invariably limited by lack of flexibility
and adaptivity to the data. In addition, solving the minimization involves expensive itera-
tive procedures that can take minutes per instance.

2.2 Supervised Learning and Amortized Optimization

Recent advances in data-driven algorithms and deep learning seek to address both afore-
mentioned shortcomings of instance-based algorithms. Using large datasets and highly-
parametrized and nonlinear neural network models, these algorithms learn priors directly
from data and enable efficient inference via nearly-instantaneous forward passes.

Given a training dataset Dtr and a neural network model Mθ with parameters ¹, the
objective to minimize is:

argmin
θ

EDtrL(Mθ;λ), (4)

where L is a loss function parameterized by ¹, EDtr denotes the empirical average, and λ

encapsulates hyperparameters of interest.

In supervised learning (SL), Dtr is assumed to contain pairs of observations and corre-
sponding ground-truth images (y,x) > Dtr, and L is some combination of K supervised
losses L(·, ·):

L(Mθ;λ) = LK(Mθ(y),x) +
K−1
"

k=1

¼iLi(Mθ(y),x). (5)

Common choices for L(·, ·) include mean-squared error (MSE), mean-absolute error (MAE),
and structural similarity index measure (SSIM).

In addition to the SL set-up, we can consider the amortized optimization (AO) scenario,
where Dtr is assumed to only contain observations y > Dtr. In AO, L takes a similar form
to Eq. (2):

L(Mθ;λ) = J(Mθ(y),y) +

K−1
"

i=1

¼iRi(Mθ(y)). (6)

Thus, Mθ is trained to minimize Eq. (2) for all observations in the dataset. Although it
minimizes the same cost function, AO provides several advantages over classical solutions.
First, at test-time, it replaces an expensive iterative optimization procedure with a simple
forward pass of a neural network. Second, since the model Mθ estimates the reconstruction
for any viable input measurement vector y and not just a single instance, AO acts as a
natural regularizer for the optimization problem (Balakrishnan et al., 2019; Shu et al., 2018;
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Wang et al., 2020). Third, recent work has shown that inductive biases of convolutional
neural networks provide favorable implicit priors for image reconstruction (Heckel and Hand,
2019; Liu et al., 2018; Ulyanov et al., 2020). Since no ground-truth images are required,
AO is sometimes referred to as unsupervised learning.

Importantly, similar to the classical cost function, both the SL and AO class of loss func-
tions involve the tuning of a set of hyperparameters {¼1, ..., ¼K−1}, which can significantly
affect the end reconstructions. Therefore, hyperparameter tuning is typically carefully done
using expensive methods like cross-validation. In this work, we propose a strategy that

can replace the expensive hyperparameter tuning step, such that reconstructions with dif-

ferent λ values can be efficiently generated at inference time. To achieve this, we employ
hypernetworks.

2.3 Hypernetworks

A hypernetwork is a neural network that generates the weights of a network which solves
the main task (e.g. classification, segmentation, reconstruction). In this framework, the
parameters of the hypernetwork, and not the main network, are learned. While originally
introduced for achieving weight-sharing and model compression (Ha et al., 2016), this idea
has found numerous applications including neural architecture search (Brock et al., 2018;
Zhang et al., 2019), Bayesian neural networks (Krueger et al., 2018; Ukai et al., 2018),
multi-task learning (Lin et al., 2021; Mahabadi et al., 2021; Pan et al., 2018; Shen et al.,
2017; Klocek et al., 2019), and hyperparameter optimization (Lorraine and Duvenaud, 2018;
Hoopes et al., 2021).

Notably, hypernetworks have been used to replace expensive hyperparameter tuning
procedures like cross-validation (Lorraine and Duvenaud, 2018). Hyperparameter tuning
can be formulated as a nested optimization. The inner optimization minimizes some loss
with respect to the weights of the main network ¹ * Θ over a training dataset Dtr, while
the outer optimization minimizes that loss with respect to the hyperparameters λ * Λ over
a held-out validation dataset Dval:

argmin
λ

EDval
L

�

argmin
θ

EDtrL(Mθ;λ)

�

:= argmin
λ

EDval
L (¹∗(λ)) . (7)

Hypernetworks can be trained to approximate the solution to the inner optimization
¹∗(λ). In this setting, a hypernetwork maps from hyperparameters to main network weights
Hφ : Λ³ Θ. The model is trained via a stochastic optimization scheme whereby hyperpa-
rameters are sampled from a pre-defined distribution over Λ during training:

×∗ = argmin
φ

EΛEDtrL(MHφ(λ);λ). (8)

The approximate solution to the inner optimization is then ¹∗(λ) = Hφ∗(λ). Note that
only the parameters of the hypernetwork × are learned.

The upshot of this method is that rapid hyperparameter tuning is possible, since the
inner optimization can be performed with a forward pass of the hypernetwork. While using
this model enables us to address the issue of costly hyperparameter tuning in the context
of image reconstruction (as discussed in the previous section), we further build on this idea

5



Wang, Dalca, and Sabuncu

in this work by leveraging the vast set of reconstructions that are capable of being generated

for a given measurement as a result of changing λ. That is, we propose this method as a
means of creating an interactive and controllable image reconstruction tool.

3. Related Works

Hypernetworks have recently shown promise in rendering agnosticm to hyperparameters
with minimal increase in training time. Hoopes et. al. use this method to enable test-
time rapid tunability in image registration for medical imaging (Hoopes et al., 2021). Our
previous conference work applied this idea to the AO setting for CS-MRI (Wang et al.,
2021a). In this work, we extend this idea broadly to other image reconstruction tasks in
both the SL and AO settings, and validate on additional datasets.

Sahu et. al. propose an interactive method for optimizing smoothing parameters in Dig-
ital Breast Tomosynthesis (Sahu et al., 2021). The authors’ method produce reconstructions
conditioned on a user-specified smoothing parameter by multiplying the intermediate acti-
vations of a reconstruction network with the parameter; the network is trained to minimize
mean absolute error. However, this method requires ground-truth reconstructions obtained
by solving many instance-based iterative procedures, which is computationally expensive.

Our work is similar in spirit to the work of Lin et. al., which uses hypernetworks to
enable controllability in the multi-task learning setting (Lin et al., 2021). In their work,
they pose multi-task learning as a multi-objective minimization problem, and show that
hypernetworks can enable test-time trade-off control among different tasks (e.g. depth
prediction and semantic segmentation) with a single model.

4. Methods

We propose to use hypernetworks for image reconstruction, where our goal is to produce
a model that can efficiently compute a reconstruction that approximates the solution to
Eqs. (5) and (6) for arbitrary hyperparameter coefficient values. We call this model a
controllable reconstruction network, since the resulting model can produce a diverse set of
reconstructions that can be controlled interactively at test-time. We illustrate the model in
Fig. 1.

4.1 Controllable Reconstruction Network

Let Mθ denote a main network with parameters ¹ * Θ which maps an observation y to a
reconstruction x̂. We define a hypernetwork Hφ : RK−1

+ ³ Θ that maps a hyperparameter
weight vector λ to the parameters ¹ of the main network Mθ. A reconstruction for a given
observation y and hyperparameter vector λ is then x̂ = MHφ(λ)(y). Effectively, this makes
λ an input to the model.

The objective is given in Eq. (8), where Λ = R
K−1
+ .

4.2 Training

We restrict our attention to the case of two and three loss terms (one and two hyperparam-
eters, respectively), although we emphasize that our method is applicable to an arbitrary
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number of loss terms. In general, Eqs. (5) and (6) can be manipulated such that the hy-
perparameter support is bounded to λ * Λ = [0, 1]K−1. For example, for one and two
hyperparameter weights and arbitrary loss terms L1, L2, and L3 (omitting ¹, x, and y for
brevity):

L2 = (12 ¼)L1 + ¼L2, (9)

L3 = ¼1L1 + (12 ¼1)¼2 L2 + (12 ¼1)(12 ¼2) L3. (10)

Algorithm 1 UHS and DHS Hypernetwork
Training

Input: DatasetDtr, modelMHφ
,K, B, b < B,

µ > 0
Output: Model weights ×

1: repeat

2: Sample {y1, ...,yB} > Dtr

3: Sample {λ1, ...,λB} > U [0, 1]K−1

4: x̂i ±MHφ(λi)(yi) for i = 1, ..., B
5: if UHS then

6: ×± ×2 µ'φ

"B
i=1 LK (x̂i;λi)

7: else if DHS then

8: {λ̃1, ..., λ̃B} ± sort{λ1, ...,λB}

9: ×± ×2 µ'φ

"b
i=1 LK

�

x̂i; λ̃i

�

10: until convergence
11: return ×

Figure 2: Algorithm for UHS and DHS train-
ing. Subscripts index over the mini-batch.
Sorting (Line 8) is done in ascending order
w.r.t. J (x̂i,yi). Red highlights differences
between UHS and DHS.

A straightforward strategy for train-
ing the hypernetwork involves sampling
the coefficients from a uniform distribution
p(λ) = U [0, 1]K−1 and sampling an under-
sampled measurement vector y for each for-
ward pass during training. The gradients
are then computed with respect to the loss
evaluated at the sampled λ via a back-
ward pass. This corresponds to minimizing
Eq. (8) with a uniform distribution for λ.
We denote this sampling strategy as uni-
form hyperparameter sampling (UHS).

4.3 Data-driven

Hyperparameter Sampling for AO

In the hypothetical scenario of infinite hy-
pernetwork capacity, the hypernetwork can
capture a mapping of any input λ to the op-
timal ¹∗ = Hφ∗(λ) that minimizes Eqs. (5)
and (6) with the corresponding λ. How-
ever, in practice, the finite model capacity
of the hypernetwork constrains the ability
to achieve optimal loss for every hyperpa-
rameter value. In this case, the model per-
formance will depend on the adopted distri-
bution for λ.

In SL loss functions, we are typically interested in the reconstructions associated with all
possible settings of the coefficients. Thus, UHS is a necessary sampling strategy. In contrast,
in AO loss functions, some coefficients will not produce acceptable reconstructions, even if
solved optimally. For example, a reconstruction with a large coefficient for TV tends to be
overly smooth with little to no structural content. Thus, sampling hyperparameters from the
entire support [0, 1]K−1 “wastes” model capacity on undesirable regions of hyperparameter
space.

In most real-world reconstruction scenarios, we don’t have a good prior distribution
from which to sample desirable regions. Instead, we propose a data-driven sampling scheme
(DHS) which learns the prior over the course of training. We leverage the data-consistency
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loss induced by a setting of the coefficients to assess whether the reconstruction will be useful

or not. Intuitively, values of λ which lead to high data-consistency loss J
�

MHφ(λ)(y),y
�

will produce reconstructions that deviate too much from the underlying anatomy, and which
therefore can be ignored during training.

One can enforce this idea by computing gradients only on values of λ which induce
a data-consistency loss below a pre-determined threshold during training. However, this
presents two problems. First, calibrating and tuning this threshold can be difficult in
practice. Second, at the beginning of training, since the main network will not produce
good reconstructions, this threshold will likely not be satisfied.

In lieu of a complex training/threshold scheduler, we adapt the threshold with the
quality of reconstructions directly within the training loop. The proposed DHS strategy
works by using the best b samples with the lowest data-consistency loss within a mini-batch
of size B to compute the gradients. In effect, this induces a variable threshold b/B of
the landscape percentage which is optimized, where this threshold adapts dynamically over
training. Algorithm 1 details the training loop for both UHS and DHS.

We demonstrate in the Experiments section that DHS leads to improved model per-
formance on the most promising hyperparameter space regions compared to UHS, given a
fixed hypernetwork capacity.

4.4 Matched Loss Output Scales

In general, a given loss function Li can be arbitrarily scaled by a constant ³iLi and still yield
the same reconstruction results (ignoring the influence on learning rate, for example). In
multi-term loss functions, the relative scales of the K loss outputs should be approximately
matched during training to allow for equal contribution of gradients during backpropagation.

In the context of our proposed method, these loss output scales have an added effect:
different scales will change the resulting reconstructions as a function of λ. If one loss
dominates another, then most of the landscape will be dedicated to minimizing the dominant
loss and very little variation will exist for different λ. Indeed, we ideally would like a
landscape which varies maximally over λ, which would (hopefully) capture as wide a range
of diverse reconstructions as possible.

For SL, we account for this by normalizing the loss functions by its “best-case” loss
averaged over a validation set. Let si denote the average validation loss on Li for a model
only optimized for this specific loss function, and we set ³i = 1/si. During training,
validation losses associated with all loss terms will (roughly) converge to a value of 1, and
thus the loss output scales will be approximately matched. Further details are given in
Section 5.4.

For AO, we cannot take the same approach since the “best-case” losses for J(·, ·) and
R(·) are 0. When Eq. (2) is derived from the maximum a posteriori (MAP) estimate, the
scaling factors can be computed with respect to the parameters of the likelihood and/or
prior distributions (Chambolle et al., 2010; Hoopes et al., 2021). However, in cases where
the regularization term cannot be expressed as a valid probability or when multiple terms
are used, such an approximation cannot be obtained. In this work, we tuned the scaling
factors to align the magnitudes of the separate terms. Although this works well in practice,
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this issue is still an open question in the general case and may be an important direction
for further research.

5. Experiments

We evaluate our proposed method on two large, publicly-available MRI datasets consisting
of coronal knees and axial brains for SL and AO classes of multi-term loss functions. For
AO, we experiment with the CS-MRI reconstruction task. For SL, we experiment with
CS-MRI, AWGN denoising, and image superresolution reconstruction tasks.

5.1 Data

We conducted our experiments using two large, publicly-available datasets. The first is
the NYU fastMRI dataset (Zbontar et al., 2018) composed of proton density (PD) and
proton density fat-suppressed (PDFS) weighted knee MRI scans. The second is the ABIDE
dataset, composed of T1-weighted brain MRI scans (Di Martino et al., 2014).

For both datasets, we used 100, 25, and 50 subjects for training, validation, and
testing, respectively. Volumes were separated into 2D slices and slices with only back-
ground were removed, resulting in a final train/val/test split of 3500/875/1750 for knee and
11400/2850/5700 for brain slices. All images were intensity-normalized to the range [0, 1]
and cropped and re-sampled to a pixel grid of size 256× 256.

5.2 Model Details

This work presents a general strategy for computing hyperparameter-agnostic reconstruc-
tions with a single model, which is applicable to any main network architecture. In this
work, the main network Mθ is a commonly-used Unet architecture (Ronneberger et al.,
2015) adapted for reconstruction, where the network input is a 2-channel, complex-valued
input and the network output is a single-channel, real-valued output. A hidden channel
dimension of 32 is used for all layers, resulting in a total main network parameter count of
149, 409.

Since Mθ receives noisy images as input, this network can be viewed as a post-processing
network preceded by an optional model-based inversion step (e.g. applying the inverse
Fourier transform to under-sampled measurements), which is a common reconstruction
pipeline in the literature (Jin et al., 2017; Kang et al., 2017; Wang et al., 2021b). We
expect the conclusions drawn in this work to hold for any deep learning-based main network,
particularly state-of-the-art unrolled networks (Monga et al., 2019).

The hypernetwork Hφ consists of a 5-layer fully-connected (FC) architecture with in-
termediate LeakyReLUs. The input to the network is the number of hyperparameters, and
the hidden dimension and output dimension are of size d. Each convolution layer in the
main network takes as input the d-dimensional output embedding of the hypernetwork and
linearly projects it to the size of the kernel and bias, where the parameters of the projection
are learned. We treat the hypernetwork and the main network as a single, large network,
and refer to the overall model as HyperRecon. We experiment with hypernetwork hidden
dimensions d * {4, 32, 128}, and refer to them as HyperRecon-{S, M, L}, respectively. We
used a batch size of 32 and the Adam optimizer for all models (Kingma and Ba, 2017).
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Table 1: Training time and number of pa-
rameters for all models on brain dataset.
“>” denotes approximation. “All Unets”
denotes all 361 baselines across all hyper-
parameters. Inference time (defined as the
runtime of one forward pass with a single
λ and y input, averaged over the test set)
for all models is >0.2 seconds.

Model Train time (hrs) # parameters

Unet ∼4 149K

All Unets ∼648 53M

HyperRecon-S ∼5 744K

HyperRecon-M ∼6 4.9M

HyperRecon-L ∼7 19M

All training and testing experiments were performed on a machine equipped with an Intel
Xeon Gold 6126 processor and an NVIDIA Titan Xp GPU. All models were implemented
in Pytorch. Table 1 outlines the training time, inference time, and number of parameters
for all models used in experiments. We train each model until the loss converges on the
validation set, typically for 1000 epochs.

5.3 Baselines

For comparison, we trained separate Unet reconstruction networks for each fixed hyper-
parameter value. We refer to these models as baselines and emphasize that they demand
significant computational resources, since each of these models needs to be trained and
saved separately (see Table 1). For SL experiments, we trained five baseline models for
¼ * {0.0, 0.25, 0.5, 0.75, 1.0}. For AO experiments, we trained 361 baseline models with
hyperparameters chosen non-uniformly on a 19 × 19 grid over the space [0, 1] × [0, 1], in
order to more densely sample in high-performing regions2.

5.4 Loss Functions

5.4.1 Supervised Learning

For SL, we consider CS-MRI, denoising, and superresolution reconstruction tasks. For all
tasks, we use MAE for L1 and SSIM for L2 (Wang et al., 2004) as the two loss terms in
Eq. (9).

MAE is a global, intensity-based metric which is simple and widely-used. SSIM is a
perception-based metric that considers image degradation as perceived change in structural
information. Prior work has shown performance gain when using a combination of these
two losses (Zhao et al., 2018). While we restrict our focus to these two losses in the SL
setting, we emphasize that our method works for any choice of supervised loss functions.

Proper HyperRecon training requires approximately-matched loss output scales, i.e. ³1

and ³2 (see Section 4.4). To compute these values, we first train two Unet models for ¼ = 0
and ¼ = 1. The validation losses s1 and s2 for the two models are computed, and then we
set ³1 = 1/s1 and ³2 = 1/s2 during HyperRecon training.

2. The 19 values were {0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.93,0.95,0.98, 0.99,0.995,0.999,1.0}.

10



Computing Multiple Image Reconstructions with a Single Hypernetwork

5.4.2 Amortized Optimization

For AO, we consider the CS-MRI reconstruction task and experiment with two regulariza-
tion terms R1 and R2 in Eq. (10): layer-wise total 31-penalty on the weights ¹ of the main
reconstruction network and the anisotropic total variation of the reconstruction image:

R1 =
L
"

i=1

'¹i'1 , R2 =
N
"

i=1

�

�[D1x]i
�

�+
�

�[D2x]i
�

�, (11)

where ¹i denotes the weights of the reconstruction network for the ith layer, L is the total
number of layers of the reconstruction network, and D1 and D2 denote the finite difference
operation along the first and second dimension of a two-dimensional image.

5.5 Evaluation

5.5.1 Supervised Learning

For SL experiments, in addition to evaluating on the trained losses MAE and SSIM, we
also evaluate on PSNR and high-frequency error norm (HFEN) (Ravishankar and Bresler,
2011). Given a 15× 15 Laplacian-of-Gaussian (LoG) filter with a standard deviation of 1.5
pixels, the HFEN is computed as the 32 difference between LoG-filtered ground truth and
LoG-filtered reconstructions.

To demonstrate the downstream utility of HyperRecon, we evaluate segmentation per-
formance of the reconstructions for varying ¼ on a deep learning-based segmentation model.
The model has the same architecture as the baseline Unet Mθ, except that it has a 5-channel
output and a final softmax layer. We train the model to minimize the soft-Dice loss (Su-
dre et al., 2017) on the same ABIDE dataset with the same data split as reconstruction
training, and evaluate the hard-Dice score (Dice, 1945). Ground truth segmentation maps
corresponding to 5 regions-of-interest3 were anatomically segmented with FreeSurfer (Fis-
chl, 2012) (see (Balakrishnan et al., 2019) for details). Batch size, optimizer, and other
hyperparameters were identical to reconstruction training.

5.5.2 Amortized Optimization

For AO experiments, we report the relative PSNR (abbreviated rPSNR) for a reconstruction
by subtracting the PSNR value for the zero-filled reconstruction from the PSNR value of
the reconstruction. Positive values for rPSNR are preferable as they indicate that the
regularization terms lead to improvement over the trivial zero-filled reconstructions.

For ease of visualization, we report the negative of certain metrics so that higher values
are better for all metrics. These are abbreviated by an “n” in front of the metric name (e.g.
nMAE, nHFEN).

5.6 Reconstruction Tasks

For all tasks, noisy inputs to our model were obtained retrospectively and performed in-

silico. Although this is a slight simplification, we believe that these experiments are consis-

3. Background, gray matter, white matter, cerebrospinal fluid, and cortex.
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tent with the main methodological message of this work, and furthermore that these results
will translate to real-world scenarios.

5.6.1 CS-MRI

k-space data was generated by retrospective under-sampling using 4-fold and 8-fold accel-
eration under-sampling masks generated using a polynomial Poisson-disk variable-density
sampling strategy (Geethanath et al., 2013; Lustig et al., 2007). The input into the models
were the zero-filled reconstructions, i.e. the inverse Fourier transform of the under-sampled
k-space data with zeros for missing values.

5.6.2 AWGN Denoising

Ground truth images were used as clean images, which were corrupted with additive white
Gaussian noise sampled from N (0, Ã2I), where Ã = 0.1.

5.6.3 Superresolution

Ground truth images were used as full-resolution images, which were down-sampled by a
factor of 4 and subsequently up-sampled using nearest-neighbor interpolation back to the
original grid size.

6. Results

6.1 Supervised Learning

We evaluate the performance of HyperRecon-L using metric curves over the space of per-
missible hyperparameter values ¼ * [0, 1]. We generated the curves for visualization by
densely sampling the support [0, 1] to create 100 discrete samples. For each grid point,
we computed the value by passing the corresponding hyperparameter values to the model
along with each under-sampled measurement y in the test set and taking the average PSNR
value.

Fig. 3 shows metric performance for brain data. Each panel shows Unet and HyperRecon-
L performance for the specified metric across ¼ values. Similarly, Fig. 4 shows metric perfor-
mance for knee data on three different reconstruction tasks. We observe very close matching
of performance across all metrics between Unet and HyperRecon-L models, indicating that
the hypernetwork is able to generate the optimal weights for the entire hyperparameter
space. For downstream brain segmentation, the optimal ¼ for maximizing Dice is around
0.25. With HyperRecon-L, this optimal point can be easily obtained with a single model.

Fig. 5a shows representative brain and knee slices for the CS-MRI task, and Fig. 5b
shows zoomed-in versions of the red arrow regions for the brain slices. We notice a significant
visual similarity between the same hyperparameters for Unet and HyperRecon-L models. In
general, a higher weight on MAE tends to lead to more blurry and smoother reconstructions,
while a higher weight on SSIM tends to lead to more noisy reconstructions with more high
frequency content. In addition, MAE tends toward less contrast between hypo-intense and
hyper-intense regions, whereas SSIM accentuates this contrast more. With baseline models
where λ must be chosen before training, these variations would be completely missed and
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Figure 3: Model performance on brain dataset for SL loss functions. Higher is better. Each
panel shows metric performance for Unet and HyperRecon-L models for varying ¼. The
loss function of the HyperRecon-L model is a sum of MAE and SSIM loss functions (first
2 panels), where ¼ = 0 corresponds to only MAE loss and ¼ = 1 corresponds to only SSIM
loss (see Section 5.4.1).

Figure 4: Model performance on knee dataset for SL loss functions. Higher is better.
Each panel shows metric performance for Unet and HyperRecon-L models for varying ¼,
where each color corresponds to a different reconstruction task. The loss function of the
HyperRecon-L model is a sum of MAE and SSIM loss functions (first 2 panels), where ¼ = 0
corresponds to only MAE loss and ¼ = 1 corresponds to only SSIM loss (see Section 5.4.1).

end users would be stuck with one reconstruction. Additional slices for CS-MRI, denoising,
and superresolution tasks are presented in the Appendix.

6.2 Amortized Optimization

We evaluate the performance of HyperRecon-{S, M, L} using rPSNR landscapes over the
space of permissible hyperparameter values (¼1, ¼2) * [0, 1]×[0, 1]. We generated landscapes
for visualization by densely sampling the support [0, 1] × [0, 1] to create a grid of size
100× 100. For baselines, the 19× 19 grid was linearly interpolated to 100× 100 to match
the hypernetwork landscapes.

Fig. 6 shows rPSNR landscapes for different reconstruction models. The top left map
corresponds to baselines. The first image in the second row shows an example histogram
of the regularization weight samples used for gradient computation over one DHS training
epoch.

The remaining images in the top row correspond to UHS models with varying hyper-
network capacities. Similarly, the bottom row shows rPSNR landscapes for DHS models
at the same capacities. We find that higher capacity hypernetworks approach the baseline
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(a)

(b)

Figure 5: (a) Representative slices for SL on CS-MRI task with 8-fold under-sampling.
Ground truth and input images are denoted in the first column. Top row are baseline
Unet reconstructions with varying ¼. Bottom row (red) are HyperRecon-L reconstructions
with varying ¼. PSNR values in reconstructions provide a basis of comparison between
Unet and HyperRecon-L reconstructions of the same ¼. Brain slices are cropped to show
detail. Arrows indicate corresponding points where the difference between reconstructions
can be appreciated. (b) Representative brain patches for HyperRecon-L, centered around
red arrows.
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Figure 6: rPSNR values for knee dataset on AO loss over the hyperparameter support
[0, 1] × [0, 1] for different hypernetwork capacity and sampling methods. The x-axis and
y-axis denote the value of the hyperparameters ¼1 and ¼2, respectively. Contours denote
level sets of fixed value (see legend). Stars in the landscapes denote maximum value. (Left)
Top image depicts the baseline landscape. Bottom image shows an example histogram of
hyperparameter values used for gradient computation during one epoch of training with the
DHS strategy. (Right) Top and bottom row show the UHS and DHS model landscapes,
respectively, for three different hypernetwork capacities.

models’ performance, at the cost of computational resources and training time (see Table 1).
We also observe significant improvement in performance using DHS as compared to UHS,
given a fixed hypernetwork capacity. We find that the performance improvement achieved
by DHS is less for the large hypernetwork, validating the expectation that the sampling
distribution plays a more important role when the hypernetwork capacity is restricted.

Fig. 7 shows representative brain and knee slices from the DHS HyperRecon-L model.
The two corresponding reconstructions are selected as follows. First, we densely sample
uniformly from [0, 1]× [0, 1] to generate 100× 100 reconstructions. Then, we filter out the
reconstructions which are below some threshold PSNR value (we choose the 90th percentile).
Finally, we choose the two reconstructions from this filtered set which are maximally sepa-
rated by 32 distance.

We notice that the two reconstructions are significantly dissimilar despite the similarity
in PSNR value. In the baseline setting, only one of these reconstructions would be available
and finding another reconstruction would require training from scratch. With our model,
users can search over the entire space of possible reconstructions and choose the one(s) they
prefer. This highlights the value of this model as a tool for the interactive selection of many
diverse reconstructions for further use based on visual inspection.
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Figure 7: Representative slices for AO on CS-MRI task on 8-fold undersampled knees.
Ground truth is denoted and two visually different but high-quality reconstructions (in
terms of PSNR) are shown in red.

7. Conclusion and Future Work

We presented a method for controllable image reconstruction using hypernetworks, which
enables the interactive selection from a dense set of reconstructions at test-time. We high-
light and address several issues related to hypernetwork training associated with the recon-
struction setting, and demonstrate empirically that our method works on two datasets and
on a variety of multi-term loss functions and reconstruction tasks.

We believe this work opens many interesting directions for further research. A straight-
forward and promising future direction is to extend this to a higher number of loss coefficient
hyperparameters. The challenges with this extension is two-fold. First, hypernetworks need
to be designed to improve their expressivity for high-dimensional hyperparameter spaces.
Second, since the space of possible reconstructions grows with additional hyperparameters,
searching through all reconstructions becomes quickly intractable. Improved techniques for
extracting the “best” reconstructions to show to the user would be necessary.

Improving the expressivity and efficiency of hypernetworks is still under-explored. From
Table 1, it can be seen that even the largest hypernetwork we experimented with requires
three times less the number of parameters as compared to the combined parameters of all
baseline models, with only a slight increase in training time. However, there may be more
efficient yet expressive parameterizations of hypernetworks (for example, hypernetworks
which only generate weights for certain layers of the main network) that can enable further
compression.

The matched scaling of loss functions discussed in section 4.4 is an important open
question. Since the optimal hyperparameter landscape is in general dependent on the scale
of the loss functions and furthermore can affect the training dynamics, an automated and
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data-driven approach to loss scaling would be preferable. Insights may be gleaned from
similar work in multi-task learning, where matching the contributions of losses associated
with different tasks is important to the end performance (Kendall et al., 2018). Other ideas
associated with matching the scale of the gradients for each loss (instead of the scale of the
loss itself) may also be useful.
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Appendix

Figure 8: Representative slices for knee on CS-MRI task with 8-fold under-sampling.
Ground truth and input images are denoted in the first column. Top row are baseline
Unet reconstructions with varying ¼. Bottom row (red) are HyperUnet-L reconstructions
with varying ¼. PSNR values in reconstructions provide a basis of comparison between
Unet and HyperUnet-L reconstructions of the same ¼.
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Figure 9: Representative slices for knee on AWGN denoising task with noise standard de-
viation Ã = 0.1. Ground truth and input images are denoted in the first column. Top row
are baseline Unet reconstructions with varying ¼. Bottom row (red) are HyperUnet recon-
structions with varying ¼. PSNR values in reconstructions provide a basis of comparison
between Unet and HyperUnet reconstructions of the same ¼.
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Figure 10: Representative slices for knee on superresolution task at 4x downsampling.
Ground truth and input images are denoted in the first column. Top row are baseline Unet
reconstructions with varying ¼. Bottom row (red) are HyperUnet-L reconstructions with
varying ¼. PSNR values in reconstructions provide a basis of comparison between Unet and
HyperUnet-L reconstructions of the same ¼.
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Figure 11: rPSNR values for brain dataset over the hyperparameter support [0, 1] × [0, 1]
for different hypernetwork capacity and sampling methods. The x-axis and y-axis denote
the value of the hyperparameters ¼1 and ¼2, respectively. Contours denote level sets of
fixed value (see legend). Stars in the landscapes denote maximum value. (Left) The top
image depicts the baseline landscape. The bottom image shows an example histogram of
hyperparameter values used for gradient computation during one epoch of training with the
DHS strategy. (Right) The top and bottom row show the UHS and DHS model landscapes,
respectively, for three different hypernetwork capacities.
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