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Abstract

Fetal growth restriction (FGR) is a prevalent pregnancy condition characterised by failure
of the fetus to reach its genetically predetermined growth potential. The multiple aeti-
ologies, coupled with the risk of fetal complications - encompassing neurodevelopmental
delay, neonatal morbidity, and stillbirth - motivate the need to improve holistic assessment
of the FGR fetus using MRI. We hypothesised that the fetal liver and placenta would pro-
vide insights into FGR biomarkers, unattainable through conventional methods. Therefore,
we explore the application of model fitting techniques, linear regression machine learning
models, deep learning regression, and Haralick textured features from multi-contrast MRI
for multi-fetal organ analysis of FGR. We employed T2 relaxometry and diffusion-weighted
MRI datasets (using a combined T2-diffusion scan) for 12 normally grown and 12 FGR ges-
tational age (GA) matched pregnancies (Estimated Fetal Weight below 3rd centile, Median
28+4wks±3+3wks). We applied the Intravoxel Incoherent Motion Model, which describes
circulatory properties of the fetal organs, and analysed the resulting features distinguishing
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both cohorts. We additionally used novel multi-compartment models for MRI fetal anal-
ysis, which exhibit potential to provide a multi-organ FGR assessment, overcoming the
limitations of empirical indicators - such as abnormal artery Doppler findings - to evaluate
placental dysfunction. The placenta and fetal liver presented key differentiators between
FGR and normal controls, with significant differences in features related to decreased per-
fusion, abnormal fetal blood motion and reduced fetal blood oxygenation. This may be
associated with the preferential shunting of the fetal blood towards the fetal brain, af-
fecting supply to the liver. These features were further explored to determine their role
in assessing FGR severity, by employing simple machine learning models to predict FGR
diagnosis (100% accuracy in test data, n=5), GA at delivery, time from MRI scan to de-
livery, and baby weight. Moreover, we explored the use of deep learning to regress the
latter three variables, training a convolutional neural network with our liver and placenta
voxel-level parameter maps, obtained from our multi-compartment model fitting. Image
texture analysis of the fetal organs demonstrated prominent textural variations in the pla-
cental perfusion fractions maps between the groups (p<0.0009), and spatial differences in
the incoherent fetal capillary blood motion in the liver (p<0.009). This research serves
as a proof-of-concept, investigating the effect of FGR on fetal organs, measuring differ-
ences in perfusion and oxygenation within the placenta and fetal liver, and their prognostic
importance in automated diagnosis using simple machine learning models.

Keywords: Fetal Growth Restriction, Logistic Regression, Convolutional Neural Net-
work, Texture Analysis

1. Introduction

The term Fetal Growth Restriction (FGR) is used to describe a fetus that has not reached
their genetic growth potential, due to placental insufficiency causing inadequate supply of
oxygen and nutrients (Lyall et al. (2013)). FGR is a clinical diagnosis, defined by the
Delphi consensus standardised definitions (Gordijn et al. (2016a)), and is divided into two
different phenotypes, with onset either early (less than 32 weeks gestational age (GA)) or
late in gestation. It is associated with high rates of stillbirth (Gardosi et al. (2013)), and
neonatal morbidity including increased rates of cerebral palsy, bronchopulmonary dysplasia,
and cardiovascular disease long term (Colella et al. (2018)). There is currently no treatment
for FGR, therefore clinicians must weigh the risks of prematurity against the risk of hypoxia
and death in utero to determine the optimal delivery time. There are limited clinical tools
to do this, so at present, clinicians follow national guidelines to make this decision (No
(2002)).

Considering the complicated nature of treatment and management, understanding the
role and development of each organ during FGR is key for effective diagnosis and patient-
specific severity assessment of the condition. Studies up to date only include quantitative
analysis of a single fetal organ, most commonly the placenta, fetal brain, and fetal liver
(Salavati et al. (2019); Malhotra et al. (2017); Miller et al. (2016); Chang et al. (2006);
Ebbing et al. (2009)). Our research overcomes these limitations by incorporating a multi-
organ analysis for FGR assessment from MRI scans.

MRI is increasingly used to image the placental circulation. The Diffusion-rElaxation
Combined Imaging for Detailed Evaluation (DECIDE) multi-compartment model separates
fetal and maternal flow characteristics of the placenta allowing measurement of the relative
proportions of vascular spaces (Melbourne et al. (2019); Couper et al. (2020)). When
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applied in early-onset FGR, it identified reduced feto-placental blood oxygen saturation,
where the degree of abnormality correlated with disease severity defined by ultrasound fetal
and maternal arterial Doppler findings (Aughwane et al. (2020b)).

The motivation for this research was to compare MR derived parameters relating to
perfusion and oxygenation within the placenta and three fetal organs (the brain, liver and
lungs) between normally grown pregnancies and those complicated by early-onset FGR,
through multi-compartment models and texture analysis. This research serves as a pre-
liminary investigation into statistical methods leveraging multi-contrast MRI techniques to
identify FGR predictors and thereby predict FGR, its severity, and resulting clinical com-
plications. We propose a set of standardised imaging tools, important features, and initial
statistical approaches for use in larger studies. Distinguishing features were then used to
predict FGR diagnosis and GA at delivery via simple machine learning models.

2. Related Works

2.1 Single- & Multi-Compartment Models

Blood oxygenation level-dependent (BOLD) contrast is a T ∗

2 -weighted sequence. It is af-
fected by variations in concentration of vascular oxygentation in the blood volume and
magentic field inhomogeneities. Quantifying T ∗

2 enables the determination of oxygen satu-
ration by leveraging the relationationship between T ∗

2 and deoxyhemoglobin (Sinding et al.
(2016, 2017)). In FGR pregnancies, the placenta is hypoxic, displaying a reduced T ∗

2 value
which can be used as an FGR biomarker (Robinson et al. (1998); Jiang et al. (2013)).
Despite the potential of BOLD-MRI in measuring oxygen saturation, its use has not yet
been validated in diagnosis of FGR and interpretation of the placental BOLD signal is
complicated by several factors that influence changes in the signal (Sinding et al. (2018);
Uğurbil et al. (2000); Chalouhi and Salomon (2014); Sørensen et al. (2015); Turk et al.
(2020)). Considering this, and due to the requirements of a gradient echo acquisition, T ∗

2

relaxometry is not quantified in the current research.

Instead, T2 relaxometry provides structural, functional, and morphological tissue in-
formation as T2 transverse relaxation times depend on several factors encompassing water
binding, macromolecular concentration, and most importantly, blood oxygenation levels
(Derwig et al. (2013); Saini et al. (2020)). Previous literature has shown that the placen-
tal T2 times in SGA or FGR pregnancies are reduced with respect to normal pregnancies
(Derwig et al. (2013)). T2 relaxation times have been used to assess placental function in
various applications (Melbourne et al. (2019, 2016a); Jacquier and Salomon (2021); Stout
et al. (2021)).

This study extended on previous placental research by producing T2 maps for different
fetal organs. It was hypothesised that because of the brain-sparing effect, certain organs
would have lower oxygen levels in FGR compared to healthy pregnancies, and thus reduced
T2 measurements would be extracted from blood flowing through non-prioritised organs
in FGR pregnancies. Portnoy et al. demonstrated the precise relationship between blood
T2 relaxation times and oxygen saturation (Portnoy et al. (2017)) by making use of the
Luz-Meiboom model, given by Equation 1, presenting the exponential relationship,

R2 = HctR2,ery + (1−Hct)R2,plas +R2,ex, (1)
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where R2 = 1
T2
, R2,ery is the erythrocyte (red blood cell) relaxation rate that depends

on oxygen saturation, Hct is the hematocrit (proportion of red blood cells in blood), and
R2,plas is the plasma relaxation rate.

Diffusion-weighted (DW) MRI is a valuable method for investigating the fetal brain-
sparing effect; providing measures of brain maturation and detection of brain lesions (Arthurs
et al. (2017)). This is attained by measuring water diffusion, which yields corresponding
apparent diffusion coefficient (ADC) values. Arthurs et al. established differences between
healthy and severe FGR fetuses, frequently leading to the clinical decision of early delivery
induction in the latter group (Arthurs et al. (2017)). The time between the MRI exam-
ination and delivery was, on average, 7.69 weeks earlier for the FGR group compared to
the healthy, thus highlighting the potential of DW-MRI for accurate diagnosis of growth
restricted cases - allowing for appropriate management plans to be put in place.

Dynamic contrast-enhanced (DCE) MRI can spatially and quantitatively characterise
maternal perfusion of placental insufficiency and tissue vasculature (Ingram et al. (2018);
Schrauben et al. (2019); Frias et al. (2015)). It describes the delivery of contrast agent
to the maternal side and its transfer into the fetal blood pool in order to distinguish be-
tween individual vascular units of the placenta. DCE-MRI is the current gold standard for
quantitative descriptions of vascular function (Frias et al. (2015); Schabel et al. (2016)).
Nonetheless, this technique has significant drawbacks as it requires an exogenous contrast.
The clearance of contrast from the feto-placental system still requires further research. To
that end, an imaging technique which does not include any safety concerns for the mother
and fetus is more pertinent.

Multi-compartment models refer to advanced mathematical models that separate the sig-
nal contributions from different tissue types (Aughwane et al. (2020b)). Diffusion-relaxation
models are growing in popularity and have found multiple applications such as in neu-
roimaging (Kim et al. (2017)), and more recently in placental imaging, encompassing the
assessment of placental function in FGR (Melbourne et al. (2019, 2016a); Hutter et al.
(2019); Jacquier and Salomon (2021)). A thorough overview of these techniques is provided
in (Slator et al. (2021)).

The DECIDE model identifies and separates the T2 values corresponding to the fetal
and maternal blood, enabling the quantification of fetal blood oxygen saturation. The
precise mechanisms and assumptions describing the DECIDE and the Extended Intravoxel
Incoherent Motion Model (IVIM) models are discussed in Section 3.2.

2.2 Diagnosis Predictions using Machine Learning

Supervised Machine Learning (ML) refers to the employment of a predictive model with an
assumed relationship between the input (features) and output (labels) variables. Its promi-
nence in medical imaging has been significantly established in recent years, particularly
in computer-aided diagnosis (Erickson et al. (2017); Giger (2018)), due to the rise of ‘Big
Data’ and available computer power. Its contribution to “intelligent imaging” is by virtue
of its potential to advance and enhance detection and diagnosis of complex disorders, risk
assessment, and therapy response (Schoepf et al. (2007); Dundar et al. (2008); Summers
(2010); Mitchell et al. (2008)). The advantages of ML stem from its ability to draw con-
nections and identify patterns between variables, surpassing human perception. However,
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its attribute as a ‘black-box function’ makes it difficult to interpret the results from ML
models and determine how features are used to arrive at predictions, thus ensuing in a lack
of clinician trustworthiness in the models. Nonetheless, ML can be leveraged to assimilate
information from datasets where the relationship between the input and output variables
are unknown and to select the best features for a certain prediction. It can be used for
decision support by aiding clinicians in interpreting medical imaging findings rather than
relying entirely on the model predictions alone.

ML enables the consolidation and unravelling of complex biomedical and healthcare
data that overcomes the limitations of traditional statistical methods. The aim of these
algorithms is to provide solutions to clinical problems by learning statistical associations of
the features extracted from the images (Shen et al. (2017)).

Current screening and diagnostic tools for FGR remain suboptimal (Audette and King-
dom (2018)). Delivery of improved clinical outcomes requires greater understanding of the
multifactorial pathogenesis in early-onset FGR and distinguishing features or biomarkers
of the condition (Audette and Kingdom (2018)). Analysis of a combination of multiple
FGR indicators (Gordijn et al. (2018, 2016b); Beune et al. (2018)), can be achieved through
use of ML methods. Supervised ML models are increasingly being employed for early
prediction and diagnosis of pregnancy conditions, including intrauterine growth restriction,
pre-eclampsia, risk of stillbirth, preterm pregnancy, and gestational diabetes (Crockart et al.
(2021); Burgos-Artizzu et al. (2020); Caly et al. (2021); Khatibi et al. (2021); Marić et al.
(2020); Ye et al. (2020); Koivu and Sairanen (2020)).

Recent work conducted by (Arabi Belaghi et al. (2021)) compared the performance
of logistic regression and artificial neural networks in predicting overall and spontaneous
preterm birth, on a dataset of 112,963 nulliparous women (singleton gestation) who deliv-
ered between 20-42 weeks gestation. The predictors included socio-demographic variables
correlated with the risk of preterm birth, such as maternal age, income, education, race,
folic acid use, etc. The prediction accuracy of both models in the first trimester was am-
biguous. But by incorporating complications during pregnancy as additional predictors,
the authors established a 20% increase in the area under the curve (AUC) from the re-
ceiver operating characteristic curve (ROC) for artificial neural networks in the validation
sample compared to the logistic regressor during the second trimester (80% vs. 60%). The
prediction performance of this work cannot be directly compared to our study, given the
substantial difference in sample size (being several orders of magnitude smaller), which
greatly influences the statistical power of the study. Therefore, our study should be viewed
only as a preliminary study, as gaining concrete and detailed information regarding model
performance and generalisability, and the features driving each ML model cannot be easily
extracted as in (Arabi Belaghi et al. (2021)), where the statistical methods were applied to
a much larger dataset.

Research into the prediction of stillbirth by (Yerlikaya et al. (2016)) employed a multi-
variate logistic regression analysis to deduce the contributions of varying maternal character-
istics and medical history in stillbirth prediction. Correspondingly, Trudell et al. generated
models for the prediction of stilbirth using backward stepwise logistic regression (Trudell
et al. (2017)). Both groups leveraged highly similar maternal demographics and medical
history and concluded similar prediction performances ranging between 64% to 67% AUC.
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Figure 1: Overview of workflow.

Despite the comparable performance of conventional logistic regression and ML meth-
ods for diagnosis predictions in previous literature (Yerlikaya et al. (2016); Trudell et al.
(2017); Koivu and Sairanen (2020); Ye et al. (2020)), the former assumes linearity and inde-
pendence between the features. As such, we extended our previous methods (Zeidan et al.
(2021)) which implemented logistic regression to diagnose FGR and assess its severity, to
a convolutional neural network (CNN). Deep learning algorithms draw on higher-level fea-
tures extracted from the lower-level features of input data (Bengio (2012)). In particular,
the benefits can be observed in supervised learning due to the scalability of deep neural
networks and feature learning abilities. The use of a CNN allows us to explore both spatial
and intensity relationships at a voxel-wise level for each of our parameter maps - infor-
mation which is otherwise excluded when employing simple logistic regression models over
averaged maps. Thus, we aim to maximise feature extraction from our parameter maps
via a CNN, where feature representation is more accurate to the underlying maps for each
organ, as no high-level averaging takes place. Nonetheless, it is important to acknowledge
that a considerable amount of data is crucial to obtaining robust ML models.

3. Methods

Model fitting techniques, described in Section 3.2, were applied to the segmented organs
of interest, to yield quantitative parameters describing various signals. These parameters
were then employed to perform texture analysis from multi-contrast MRI modelling, as
described in Section 3.3. Results from the model fitting were used as inputs to the classifier
and regressor in Sections 3.6 to 3.8 to predict a diagnosis of FGR and the GA at delivery.
An overview of this pipeline is depicted in Figure 1.
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3.1 Data

Patient MRI scans of voxel resolution 1.9x1.9x6mm were acquired using the acquisition
parameters from (Melbourne et al. (2019)), where b-values and echo times are varied in pairs
(enabling both T2 relaxometry and DW-MRI fitting), using a 1.5 T Siemens Avanto and
performed under free-breathing. The dataset consisted of 12 early-onset FGR (Gordijn et al.
(2016a)) ranging between [24+2, 33+6] gestation weeks+days, and 12 control pregnancies with
MR data ranged between [25+1, 34+0] GA interval, (Median 28+4wks±3+3wks) respectively.
Specific details on subject inclusion criteria are available in (Aughwane et al. (2020b)). The
study was approved by the UK National Research Ethics Service and all participants gave
written informed consent (REC reference 15/LO/1488).

There are biological mechanisms that may cause differences in the distribution of blood
perfusion throughout the fetus in FGR. To investigate this, manual segmentation of the
placenta, liver, lungs and brain was accomplished using the open-source ITK-SNAP appli-
cation (image segmentation). The resultant 3D mask files were used within the NiftyFit
package (Melbourne et al. (2016b)) for multi-parametric model-fitting (Melbourne et al.
(2019)), and to perform texture analysis.

3.2 Model Fitting

Model fitting techniques were applied to each organ segmentation over the averaged region
of interest (ROI) signal and on a voxelwise scale, yielding quantitative metrics for both
approaches. Non-linear least squares were used to perform the fitting, with voxelwise fitting
being initialised with the ROI parameter estimates - enhancing signal-to-noise ratio (SNR)
by reducing the changes of fitting to local minima. A range of models were explored,
including simple T2 and ADC estimation, as well as more complex models based on IVIM
(Le Bihan et al. (1986)) and DECIDE (Melbourne et al. (2019)). Investigated in this
research were parameters linked to diffusion, but they do not represent diffusion directly.
The simplest T2 model fitting describes the MRI signal as

S = S0e
−TE/T2 , (2)

where TE are the echo times, S is the measured signal, and S0 the baseline signal. Regarding
simple ADC fitting, this is accomplished using

S = S0e
−bADC , (3)

where b are the b-values. Thus, the acquired data requires varying TE and b-values to
allow for dual ADC and T2 model fitting.

The IVIM model describes perfusion as a pseudodiffusion process (represented by a pseu-
dodiffusion coefficient, D∗), by characterising the collective motion of blood water molecules
within the vessel network as a random walk. The IVIM model also incorporates “true” dif-
fusion of water molecules (ADC), modelling the signal as

S = S0[fe
−bD∗

+ (1− f)e−bADC], (4)

where f is the perfusion fraction (volume occupied by incoherently flowing blood in a given
voxel) and b is the b-value (Le Bihan (2019)). We refer to this model as Standard IVIM
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(Eq. 4). This can be extended to incorporate T2 relaxometry as

S = S0e
−t/T2 [fe−bD∗

+ (1− f)e−bADC]. (5)

We refer to this model (Eq. 5) as T2 IVIM. However, this model presents inherent
limitations, as it assumes both vascular and tissue compartments (parametrised by pseudo-
diffusion and true diffusion coefficients) have the same T2 value, leading to an overestimation
of the pseudo-diffusion volume fraction f with increasing echo time (t) (Jerome et al. (2016)).
Thus, the presented analysis incorporates more complex models, accounting for varying
blood and tissue T2 values:

S(b, t) = S0[fe
−bD∗

e−t/T2p + (1− f)e−bADCe−t/T2t ], (6)

with f being the perfusion fraction, T2p and T2t being the transverse relaxation time for the
pseudo-diffusion compartment (blood) and true diffusion compartment (tissue), respectively
(Jerome et al. (2016)). We refer to this model as Extended 2×T2 IVIM (Eq. 6).

The DECIDE model (Melbourne et al. (2019)) was also applied specifically to the
placenta, which assumes three compartments with distinct diffusivity and relaxivity: fetal
capillaries, trophoblast space and maternal blood pool. This model, given by Equation 7,
enables computation of novel placental biomarkers including maternal fetal blood volume
ratio and fetal blood saturation.

S(b, t) = S0 [fe−bD∗
−t(1/Tfb

2 ) + (1− f) e−bADC (νe−t(1/Tmb
2 ) + (1− ν) e−t(1/Tts

2 ))]. (7)

Here, Tfb
2 , Tmb

2 and Tts
2 represent the transverse relaxation times for fetal blood, mater-

nal blood and trophoblast space, respectively; and ν is the maternal blood volume fraction.
Rmb

2 and Rts
2 are fixed known, (240ms)−1 and (46ms)−1 respectively at 1.5T), taken from

(Melbourne et al. (2019)).

3.3 Texture Analysis

The aim of texture analysis was to examine the spatial arrangement of intensities in the
segmented organs using in-house software developed in MATLAB (The MathWorks Inc.,
Natick, MA). To perform the texture analysis, a grey level co-occurrence matrix (GLCM)
was computed to provide insight into the spatial interaction of neighbouring pixels. Haralick
features are statistical features extracted from the GLCM to describe the overall image
texture using measures encompassing energy, entropy, correlation, contrast, variance, and
homogeneity (Haralick et al. (1973)):

Energy: This measure is extracted from the angular second moment, which
calculates the grey level local uniformity,

Energy =

√

∑

i

∑

j

p2d (i, j) (8)

where i and j represent the image dimensions, and pd(i, j) corresponds to an
element of the normalised GLCM.
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Entropy: A statistical measure of randomness.

Entropy = −
∑

i

∑

j

pd (i, j) ln pd (i, j) (9)

Correlation: A measurement of the similarity between neighbouring pixels,

Correlation =
∑

i

∑

j

pd (i, j)
(i − µx)(j − µy)

σxσy
(10)

where µx; µy are the means and σx; σy are the standard deviations.
Contrast: The number of grey levels that exist in the scan.

Contrast =
∑

i

∑

j

(i − j)2 pd (i, j) (11)

Variance: A measure of variability.

V ariance =
∑

i

∑

j

(i − µ)2 pd (i, j) (12)

Homogeneity: The number of changes of intensity that appear in a region
of interest.

Homogeneity =
∑

i

∑

j

1

1 + (i − j)2
pd (i, j) (13)

We hypothesised that these six Haralick features could be used to discern between FGR
and appropriately grown fetuses due to a lower SNR present in FGR fetuses as a result
of lower T2 and decreased oxygen saturation (Portnoy et al. (2017)). We expected that
the lower signal intensities in FGR compared to controls would be especially evident in
the placenta and fetal liver and correlate directly with placental insufficiency (Aughwane
et al. (2020a); Kessler et al. (2009)). For instance, this would be reflected in the computed
Haralick features by observing lower contrast values in FGR fetuses in comparison to the
controls. Decreased contrast in the ROI would equate to an increase in homogeneity.

These features were computed for each subject on the most significant parameter maps
for each organ (as determined by the t-tests described in Section 3.4 with a p-value cut-off of
0.05), as well as the b=0 volume with lowest echo time from the original IVIM T2-weighted
MRI scan; this yielded interpretable texture descriptors (Haralick et al. (1973); Bharati
et al. (2004)). The images were quantised into grey level bins of fixed equal width for
between-subject texture feature value comparisons. Single-factor analysis of each feature
was conducted between the FGR and control patients. Results from the texture analysis
were then concatenated by considering the mean and max of each Haralick feature.

3.4 Feature Statistical Significance

The model fitting maps provide voxelwise information for each of the parameters optimised
for. We simplified this information by considering the mean, max, variance and mode of
each of voxelwise map. This yielded reduced parameters to be used for subsequent classical
ML-based assessments.
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We performed statistical analysis on these simplified model fitting parameters and on
the Haralick features, in order to identify the most significant features in differentiating
between the control and FGR cohorts. A Shapiro–Wilk test was used to confirm normality
of the parameters obtained from the model fitting on a patient-by-patient basis to verify it
was justifiable to run a t-test on them. In particular, the Shapiro-Wilk test was selected for
its efficacy on small sample sizes. The test was run on the distribution of the model fitted
parameters for each of the organ ROIs done over all of the samples split between the two
cohorts.

T-tests were then carried out between the two cohorts for all the model fitted parameters,
Haralick features, and organ ratio parameters. Results with p-value less than 0.05 indicated
statistically significant differences between the control and FGR group means.

We used these significant parameters for training simple classical machine learning mod-
els on classification (control or FGR) and regression (GA at birth, time from scan until birth
and baby weight), as detailed in the following sections.

3.5 FGR Biomarkers for Machine Learning Outcome Predictions

Following these statistical tests, we aimed to explore the use of these significant features (p-
value < 0.05 in distinguishing between controls and FGR) as potential FGR biomarkers for
severity assessments. For this, we conducted various ML training experiments, employing a
binary classifier for diagnosis prediction (control or FGR), and simple regressors to predict
GA at birth, time from scan until birth, and baby weight.

Our training experiments explored the most appropriate use of our data to achieve
optimal results. For this, we trained each model first using exclusively model fitting data
(mean, max, variance and mode of each of voxelwise map), followed by exclusive training
using Haralick features, and finally combining both model fitting data and Haralick features.
Only the features with a p-value< 0.05 in differentiating between controls and FGR cohorts
were employed.

3.6 Binary Classification for FGR Diagnosis

We employed logistic regression for binary classification, using a stochastic average gradient
(SGA) solver that supports the L1 regularisation to minimise the cross-entropy loss function.

This classifier models the conditional probability of an FGR or non-FGR (control) di-
agnosis, Y, given input features, X (model fitting data and Haralick features), by applying
a sigmoid function to the output of a decision function h(x) = wTX, which ensures an
output between 0 and 1:

P (Y = 1|X) =
1

1 + e−wTX
, (14)

where X is the input feature vector, and w is the learnt weight vector. These probability
scores (i.e. the output for Eq. 14) are mapped to discrete classes with a decision boundary
of 0.5, that is, an output probability< 0.5 indicates an FGR diagnosis, while an output
probability≥ 0.5 specifies a non-FGR diagnosis.

The optimal regularisation parameters (found via a grid search) were an L1 ratio of 0,
i.e. L2 regularisation for all classifiers; and a regularisation strength (C) of 0.001 for the
classifier trained exclusively on model fitting features, as well as the joint model (Haralick

10



Approach to automated diagnosis & texture analysis of fetal organs in FGR

and model fitting features), while the model trained only on Haralick features yielded a
C = 0.25.

Based on RFECV, we used 44 out of 84 features for the classifier trained on model
fitting data; 34 out of 53 features for the classifier trained on Haralick features; and 118 out
of 137 for the classifier trained on both feature types.

3.7 Linear Regression Model for Severity Assessment

We trained three multi-variate linear regressors to predict GA at delivery, time interval
between scan and delivery, and baby weight, as these variables (ŷ) are potential indicators of
FGR severity. Thus we fitted a linear equation ŷ = Xw to our feature matrix X, minimising
the sum of squared errors between predicted and expected target values (including L1 and
L2 regularisation) in order to find the weights, w.

Refer to Table 3 in Section 4.5 for information regarding model tuned hyperparameters
and number of selected features for each regressor.

3.7.1 Training Split and Feature Selection

For our simple ML classifier and regressors, the data was split into 80% for training (n=18)
and 20% for testing (n=5). The training set was used for hyperparameter tuning using 5-fold
cross validation. The reduced sample size in our research was confronted by additionally
employing our training set to obtain 5-fold cross validated evaluation metrics, as well as the
final test set metrics.

Recursive feature elimination with 5-fold cross validation (RFECV) was implemented
on the training set to determine the optimal number of features for each ML model.

3.8 Deep learning for Severity Assessment

The regression methods described in Section 3.7, use data which statistically shows differ-
ences between FGR and healthy (p-value<0.05), followed by RFECV feature selection, to
further reduce the noise present. However, the features used (in Section 3.7), particularly
the model fitting features, drastically reduce the amount of parameter maps information:
by taking single statistical values over whole voxelwise maps (i.e. mean, max, min, mode),
important spatial relationships and detailed voxel-level information may be eliminated. The
Haralick features do contain information regarding spatial arrangements and intensity re-
lationships, which supports our previous method.

In an attempt to make use of this detailed information contained within each parameter
map, we explored the potential of a Convolutional Neural Network (CNN) for severity
assessment, aiming to predict the same regression variables as with our simple ML models
(GA at birth, time interval from scan until delivery, and baby weight).

3.8.1 Data pre-processing

We used the voxelwise parameter maps for the liver and placenta only, as we found these
organs to consistently have the highest number of significant differences between controls
and FGR. We concatenated the first layer, the S0 signal, of the volumetric image (i.e. the
b=0 volume with the lowest echo time from the raw acquisition) with fitted parameter maps
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from the Extended T2 IVIM model for the liver (perfusion fraction f , D∗, T2p, T2t and
ADC); and fitted parameter maps from the DECIDE model for the placenta (f , D∗, ν,
T2fb, Tmb, ADC), yielding a total of twelve input channels.

The maps we selected were only those pertaining to the models which give us most
information, which are the most complex models. Higher complexity models are more prone
to add noise to the fitted maps. Contrasting to this, our input to the simple linear regressors
were highly processed and selected features: we first took various extremely simplifying
metrics of our voxelwise map (e.g. taking the mean), followed by selecting only those that
present a statistical significance between both cohorts, in addition to RFECV. This provides
us with features which are highly representative of distinctions between controls and FGR
groups.

The data was split into 80% for training (N=18), and 20% for testing (N=5). The
intensity of all images were normalised by subtracting the mean and dividing by the standard
deviation, followed by scaling between 0 and 1. We used Gaussian noise, intensity shifts,
bias field, contrast adjustments, axis flips, and affine deformations for data augmentation.

3.8.2 CNN implementation details

A five layer residual neural network (ResNet) (He et al. (2016)) was employed for each of
our regression predictions, with output channels = [64, 64, 128, 256, 512], with respective
strides = [1, 1, 2, 2, 2], applying two 3D convolutions for each residual block (kernel size of
3). Instance normalisation (Ulyanov et al. (2016)) was used after each convolution, followed
by Parametric Rectified Linear Unit (PReLU) activation functions (He et al. (2015)).

Mean Squared Error (MSE) was leveraged as the loss function, with an AdamW opti-
miser. A weight decay of 5× 10−4 was employed for all of our regression networks, with a
learning rate (LR) = 5×10−4 for predicting baby weight; and LR = 5×10−5 for predicting
GA at birth and time from MRI scan to delivery.

4. Results

4.1 Model Fitting

Figure 2 depicts examples of the parameter maps obtained from the model fitting techniques.
The lower parameter map intensities in FGR compared to that in the controls is indicative
of hypoperfusion and low oxygen saturation levels in these fetal organs. The T2 maps
display pronounced differences in the signal intensities of both cohorts.

The most significant parameters in identifying differences between controls and FGR
fetuses were the perfusion fraction, S0, pseudo-diffusion coefficient (D∗), and T2 as given
in Table 1. The placenta and liver were determined to be the most influential organs in
diagnosing FGR.

The results for the parameter feature importances in Table 1, specify that there were
no significant differences detectable in the fetal brain and lungs between normal and FGR
fetuses, especially compared to the placenta and liver, where differences were significant.
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Figure 2: Perfusion fraction (dimensionless) layer in the model fitting maps each taken from
a single slice in the MRI scan. These correspond to ((a),(e)) placenta, ((b),(f))
liver, ((c),(g)) brain and ((d),(h)) lungs. Top and bottom rows correspond to
controls and FGR, respectively.

Figure 3: T2 (units of ms) maps for ((a), (c)) placenta, and ((b), (d)) liver from a single
slice. Top and bottom rows correspond to controls and FGR, respectively.

4.2 Texture Analysis

Evaluation of the resulting Haralick features corroborated the degree of effect on the pla-
centa in FGR, particularly using the Extended T2 IVIM map and its mean variance. The
brain was the least significantly different organ in this analysis. Greater mean variance in
the signal from the Extended T2 IVIM model of the healthy cohort (refer to Figure 4(a)),
is indicative of increased heterogeneity in FGR placentas. The max correlation of the liver

13



Zeidan et al

Model Fitting Technique Parameter Average
Metric

Pairwise Group
Comparison

Organ T Statistic P-Value

Dependent IVIM D* Mean Control vs FGR Placenta -4.597300242 0.00015589

Extended 2xT2 Dependent
IVIM

D* Mean Control vs FGR Placenta -4.560436097 0.000170214

DECIDE Model (Voxelwise
Measurements)

D* Mean Control vs FGR Placenta -4.205788361 0.00039723

Extended 2xT2 Dependent
IVIM

Perfusion
Fraction

Min Control vs FGR Placenta 3.725183003 0.001250966

Extended 2xT2 Dependent
IVIM

Perfusion
Fraction

Mode Control vs FGR Placenta 3.725183003 0.001250966

Standard IVIM Perfusion
Fraction

Median Control vs FGR Liver 3.624757118 0.001587669

T2 Dependent IVIM T2 Min Control vs FGR Placenta 3.463092031 0.002326109

Extended 2xT2 Dependent
IVIM

Perfusion
Fraction

Median Control vs FGR Placenta 3.27041186 0.003653498

T2 Dependent IVIM Perfusion
Fraction

Min Control vs FGR Placenta 3.249455242 0.003836258

T2 Dependent IVIM Perfusion
Fraction

Mode Control vs FGR Placenta 3.249455242 0.003836258

Table 1: Hierarchy of parameter feature importances of the voxelwise fitted parameter map
measurements. Refer to Appendix A for an extension of the table which includes
the 50 most significant features.

perfusion fraction in the controls in Figure 4(d) reflects larger intensity differences compared
to FGR. This is a significant feature to consider in the Standard IVIM model when studying
the liver in FGR, especially given that the notches do not overlap between the cohorts.

4.3 FGR Diagnosis via a Classification Model

Referring to the results presented in Table 2, the classifier performs best when trained
exclusively on model fitting data, achieving a prediction accuracy of 100% in testing, and
thus a precision and recall score of 1.0.

This is further validated by the cross validated accuracy on training set, with a standard
deviation of only 10% across folds, hinting at optimal model generalisability.

4.4 Classification Feature Importance

Given our optimal test set classification results (see Table 2), we qualitatively assess the
most important features driving each classifier model. These were obtained via Recursive
Feature Elimination (RFE). We obtained the exact same top five features for both the
logistic regressor trained exclusively on model fitting data, and the logistic regressor trained
on both Haralick features and model fitting data.

Figure 5b shows distinct differences between controls and FGR cohorts. Here, control
subjects display a much higher placenta and liver perfusion relative to the lungs, compared
to FGR subjects. This is an indicator that in FGR, both the placenta and the lungs are
much less perfused than other vital organs such as the lungs.
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Figure 4: Comparison of most significant Haralick features. Notched box plots of the
most significant placental (pink) and liver (blue) Haralick features: (a, b) mean
values of the variance and contrast of the perfusion fraction in the Extended T2

IVIM model, (c) max values of the contrast of the D* parameter in the Standard
IVIM model, and (d) max values of the correlation computed from the
MRI scan (b=0 volume). (Refer to Appendix B for a breakdown of
the 50 most significant Haralick features.) The notches in the box
plots delineate the extent of significant difference in the medians of
the investigated features by representing the confidence interval of the
metric.

The differences between the performance of the model fitting techniques can be inferred
from Figure 5c. It showcases the ‘liver/lungs median f ’ plotting the Extended 2xT2 IVIM
model against the Standard IVIM model. When projected onto each axis, the x-axis (i.e.
the Standard IVIM model), permits a more accurate linear classification between the co-
hort compared to the Extended 2xT2 IVIM model. Seemingly, the Standard IVIM model
produces a better fit to our data (for this particular parameter) than the more complex
models with additional parameters, potentially due to the noise present.
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Training Dataset
Cross Validation (N = 18) Testing (N = 5) RFE

Accuracy Accuracy Sensitivity Specificity Top Five Features
(Model)

Model Fitting Features 95 ± 10% 100% 100% 100%

Placenta mean D* (T2
IVIM)

Placenta mean D* (Ex-
tended 2xT2 IVIM)

Placenta mean D* (DE-
CIDE)

Liver/Lungs median per-
fusion fraction (Standard
IVIM)

Placenta/Lungs median
perfusion fraction (Ex-
tended 2xT2 IVIM)

Haralick Features 77 ± 12% 80% 67% 100%

Placenta mean variance
D* (Extended 2xT2 IVIM)

Placenta max correlation
D* (Extended 2xT2 IVIM)

Placenta mean correlation
D* (T2 IVIM)

Liver max contrast D*
(Standard IVIM)

Liver mean contrast D*
(Standard IVIM)

Combined Features 88 ± 15% 100% 100% 100%

Placenta mean D* (T2
IVIM)

Placenta mean D* (Ex-
tended 2xT2 IVIM)

Placenta mean D* (DE-
CIDE)

Liver/Lungs median per-
fusion fraction (Standard
IVIM)

Placenta/Lungs median
perfusion fraction (Ex-
tended 2xT2 IVIM)

Table 2: Classification Results. Evaluation metrics for cross-validation and testing for
each classifier, alongside the top five features selected by Recursive Feature Elim-
ination (RFE).

4.5 Severity Assessment via a Regression Model

Table 3 includes our test set and cross validated regressor results. In accordance with our
classifier results, the models with highest performance are those trained on model fitting
features, excepting predictions for time from scan until delivery, where the combined model
displays an insignificantly lower root mean square error (RMSE) on test set compared to
the model trained exclusively on model fitting data.

Figure 6 depicts test set regression predictions for our best performing regressors, against
true labels. Qualitatively, the test set predictions that mostly resemble the true data points
are from the time interval between MRI and delivery (Figure 6b), however this has two
important outliers. It is complex to comment on the significance of this, given the extremely
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Figure 5: Relationship between the features employed in the classification model.
(a): Placenta mean D* from the Extended 2×T2 IVIM model against the T2
IVIM model. (b): Placenta/Lungs mean perfusion fraction from the Extended
2×T2 IVIM model against Liver/Lungs median perfusion fraction from the Stan-
dard IVIM model. Note that values have been scaled. (c): Liver/Lungs median
perfusion fraction from the Extended 2xT2 IVIM model against the Standard
IVIM model.

small test set. The plot depicting baby weight predictions (Figure 6c) visually appears as
the worst fit, however the value range for this variable is much larger, which may partially
explain this. Additionally, the most important outliers for baby weight are predictions
which are lower than the actual baby weight, which is clinically significant: it is best to
overestimate the severity than underestimate it.
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Prediction
Training

Dataset

Regularisation

strength (α)

Regularisation

Ratio (L1/L2)

RFECV

(Selected

Features/Total

Features)

Cross Val-
idation (N
= 18)

Testing (N
= 5)

RMSE ±

STDEV
RMSE

GA at

Delivery

Model
Fitting Fea-
tures

33.93 L2 only 71/84 2.9 ± 2.36
weeks

2.1 weeks

Haralick
Features

0.49 L1 only 5/53 4.48 ± 4.13
weeks

3.06 weeks

Combined
Features

44.98 L2 only 119/137 3.0 ± 2.42
weeks

3.1 weeks

Time from

scan until

delivery

Model
Fitting Fea-
tures

59.64 L2 only 84/84 3.21 ± 2.53
weeks

3.12 weeks

Haralick
Features

1.15 L1 only 5/53 4.95 ± 3.51
weeks

4.82 weeks

Combined
Features

7.20x10−3 0.31 133/137 3.5 ± 2.68
weeks

3.09 weeks

Baby weight

Model
Fitting Fea-
tures

2.32x10−3 0.16 64/84 372.71 ±

334.42 g
991.36 g

Haralick
Features

25.6 0.92 28/53 738.88 ±

600.58 g
1591.72 g

Combined
Features

3.56 L1 only 5/137 668.64 ±

488.42 g
1099.06 g

Table 3: Regression Results. Tuned linear regressor model hyperparameters with corre-
sponding evaluation metrics for cross-validation and testing (RMSE). Best results
for each outcome are highlighted in bold.

RMSE on Test Set (N = 5)

GA at delivery Time from scan until delivery Baby weight

5.33 weeks 5.93 weeks 1169.88 g

Table 4: Results for ResNet regression predictions on test set.

4.6 Deep Learning Regression

The ResNet results for severity assessment are included in Table 4. Both GA at birth
and time interval between scan and delivery resulted in a much higher RMSE than those
obtained from our simple classical linear regressors (see Section 4.5).

5. Discussion

In this study, we combined model fitting techniques, texture analysis from multi-contrast
MRI modelling, and ML models, to facilitate multi-fetal organ analysis of FGR. This pro-
vided a more holistic approach to imaging this common pregnancy condition and presented
an approach towards automated diagnosis and severity assessment. Differences between
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Figure 6: Regression test set results against true features for GA at delivery (a), time
interval between MRI scan and delivery (b), and baby weight (c).

FGR and non-FGR fetuses were observed, particularly in the placenta and fetal liver, em-
phasising the significant effect of FGR on these organs.

Overall, the fitted model parameters reveal decreased f, T2, and D∗ in the liver and
placenta in FGR fetuses compared to the controls. These findings are validated by those
from (Shi et al. (2019); Siauve et al. (2019); Razek et al. (2019); Aughwane et al. (2021)).
The hierarchy of feature importances in Table 1 suggests that the brain and lungs may
benefit from alternative analysis, focusing on certain cortical regions for the brain, and
incorporating alternative imaging modalities for the lungs, as model fitting MRI analysis
may not be the most appropriate technique for this fluid-filled organ. These differences
are indicative of a reduced oxygen saturation and perfusion within these organs, as well
as abnormal capillary blood flow motion (Aughwane et al. (2020b)). We did not observe
significant differences in the properties of fetal brains and lungs between the FGR and
control groups.

The most influential Haralick features were extracted from the perfusion fraction mea-
surements, particularly computed from the Extended T2 IVIM and Standard IVIM models.
Another important parameter determined by the Haralick features was T2, attributed to
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its correlation with oxygen saturation (lower T2 reflects a lower oxygen saturation (Portnoy
et al. (2017))).

The placenta was established as the organ with most significant textural differences
between the FGR and control groups. Variance, contrast, entropy and energy in placental
perfusion fraction maps were the most significant textural differences between FGR and
controls. This may be related to differences in the presence of maternal and fetal vascular
malformation (Mifsud and Sebire (2014a); Burton et al. (2009)).

The second organ with greatest textural differences between both cohorts was the liver,
particularly the D∗ maps (contrast, correlation, and energy), indicating spatial differences
in the incoherent fetal capillary blood motion in this organ. This may indicate an abnormal
blood motion in the liver compared to a healthy developing organ, affecting nutrient supply
to this organ and may be related to the role of the ductus venosus in redistributing blood
to the heart under the influence of increasing hypoxia (Mifsud and Sebire (2014b)). Energy
was heavily influenced by the number of grey levels and was, therefore, a significant feature
for the placenta, lungs and brain, due to the presence of similar intensity voxels within
local regions. Correlation was affected by the noise present in the image, which explains
the notable correlation differences found in the liver, being the organ with the lowest SNR.

The feature importances determined by RFE for the classifier in Section 4.4, and the
fact that they coincide with the top five features for the logistic regressor, indicate that
these are very strong features in determining model predictions. The top five features from
our best regressor models are those involving the liver f, placenta f, placenta D*, placenta
tissue T2, and liver/lung D*. Thus, the top features we obtained here are very similar to
those from our binary classifiers, which strengthens our argument that the liver and placenta
may be less well perfused in FGR, with altered circulation patterns. We additionally found
placental tissue T2 as a significant feature for severity predictions. Tissue T2 is related to
tissue oxygenation. Therefore, the fact that this is one of our most important features for
severity assessment may be linked to reduced placental oxygenation in more severe cases,
affecting fetal growth.

In particular, these features all involve either the placenta and the liver, which supports
our prior t-tests and Haralick feature analysis. Two markedly informative features are the
ratios of Placenta/Lungs and Liver/Lungs median perfusion fractions (f ). These features
suggest that in control subjects, the relative perfusion of the liver and placenta compared
to the lungs is much higher than in FGR cases, i.e. the liver and placenta are not deprived
of nutrients, as may be the case in FGR.

The recurrence of the D* and f in the top features demonstrate these may be potential
FGR biomarkers. Figure 5 includes a visual depiction of the mean D*, as computed from
two different models. The linear relationship between variables on the leftmost plot (a)
is due to the axis representing the same variable, as computed from two different models,
thus differences are due to different model assumptions and noise. This plot clearly show
abnormal D* placenta values for FGR subjects, with these displaying a much larger spread
compared to controls. This pseudo-diffusion coefficient (D*) describes macroscopic intra-
capillary blood motion. Thus, these results are suggestive of abnormal placental circulatory
patterns, which may be due to placental insufficiencies and dysfunctions in FGR.

While blood in the intervillous space appears to undergo incoherent motion, the maternal
blood fraction is not attributed to D* in addition to ADC in Equation 7, as previously

20



Approach to automated diagnosis & texture analysis of fetal organs in FGR

modelled by (Melbourne et al. (2019)). Our working assumption within the modelling
is that maternal blood arrives at high-flow, low-velocity, resulting in an overall lower D*
value compared to that for fetal intra-capillary blood and moves slowly through the villous
structure. It is probable that this assumption is less true close to the spiral artery inlets -
but this remains to be fully validated.

Placental and liver perfusion fraction, D* and tissue T2 were amongst the most impor-
tant features for our ML binary classifiers and linear regressors, as determined by RFE.
This supports our choice of most important textural differences and aforementioned bio-
logical reasoning. The classifier achieved 100% accuracy on the test set, indicating that
the model features are powerful indicators for FGR detection. But these results require
prospective validation in a larger study population due to the small test group size (n=5) in
this proof-of-concept study, which may have resulted in overfitting of the models to the fea-
tures. Moreover, a larger dataset would permit the transition into more complex prediction
models in future research.

The RMSE of 2.1 weeks and 3.09 weeks for our linear regressor predicting GA at deliv-
ery and time interval from scan until delivery, respectively, encode a large window in terms
of fetal development. Recent research conducted by Yamauchi et al. employed leave-one-
out cross validation to predict GA in normal and complicated pregnancies from urinary
metabolite information (Yamauchi et al. (2021)). The authors achieved a Pearson corre-
lation coefficient of 0.86 between the true and predicted GAs during normal pregnancy
progression, and an RMSE of 26.7 gestation days (3.81 weeks). Thus, the performance of
our regressor appears to be comparable with that from a model trained on 187 healthy
pregnant women.

The results in Table 3 indicate a lower RMSE from the combined model compare to the
model trained exclusively on model fitting data. This signifies that our model fitting maps
have a higher difference in intensity values, rather than textural or spatial relationships,
between control and FGR cohorts, and for varying degrees of condition severity. From a
mathematical point of view, considering that our data presents a range of 3864 g for baby
weight, 15 weeks for GA at birth and 15.57 weeks for time interval between MRI scan and
delivery; our RMSE on test set only represent 25%, 19.85% and 14% out of our total dataset
range for baby weight, scan to birth interval, and GA at birth, respectively.

However, from a clinical perspective, offering a prediction with a RMSE of 2-3 weeks
may not be of much added clinical value, given the close monitoring of FGR pregnancies,
particularly in the weeks leading up to birth. These clinical patient management schemes
offer a much tighter range of potential and optimal delivery dates. Nonetheless, the purpose
of our regressors is not to supplant current delivery prognosis practices, but to aid in
providing tailored patient assessments of severity, maximising information extracted from
MRI scans, not currently considered routine clinical practice (i.e. model fitting techniques
and organ comparison assessments).

From this, we demonstrate the ability of our method to provide insights into how fetal
organs are affected in FGR, using this information to establish optimal delivery time within
a two week range, which in future work may be of use to establish which pregnancies must be
closely monitored. While we expect more severe cases to require early delivery, we do make
important assumptions for these predictions, namely that all cases were delivered using
the exact same criteria (when in practice patient view may also have influenced delivery
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choices), and that the appropriate and optimal clinical decisions were made, which is not
unreasonable considering all our cases are from a specialised FGR unit.

For this reason, we also investigated baby weight as a postnatal severity metric. We
obtained optimal results for this metric, which demonstrates that fetal organ features such
as perfusion are closely related to appropriate fetal growth, as determined by postnatal
weight.

The ResNet prediction results in Table 4 concluded a much higher RMSE compared
to our simpler logistic regression model. There are many potential reasons for this, such
as the amount of noise in our CNN input data. Another evident reason for our poorer
deep learning results is our small sample size, which, although we employed augmentation
techniques, may still be insufficient to reliable train a CNN. Nonetheless, we obtained much
closer results to our linear regressors for baby weight ResNet predictions. The fact that
we included MRI scan data as our first channel may play a role in this, as baby weight
is closely related to fetal size, which may be assessed from this first channel. Another
factor to consider is the 6mm slice thickness of the scans being of a comparable size to
the fetal organs. The structures of interest, such as the signal intensities of small vascular
features and smaller tissue compartments (for instance in the fetal kidney), may have been
susceptible to partial volume averaging compared to the brain, which is a bigger structure
in comparison. However, our multi-compartment modelling takes this effect into account
to some degree by attributing the signal from a single large voxel to different tissues.

Our deep learning method demonstrates how our organ model fitting maps contain
spatial and intensity information which may be efficiently retrievable via CNNs, and presents
potential to aid in providing condition information. Future work could test this directly
with the current dataset by skipping the model fitting step. But there would be a resulting
trade-off between interpretation (from validated MRI physiological models) and clinical
predictivity (where ML techniques are a relative black-box for accurate prediction in absence
of interpretability).

Our method proposed in this preliminary evaluation must be refined before translation to
a clinical environment, but it may serve as a guide on condition severity. In practice though,
this tool would also be used in conjunction with a wide range of information and existing
biomarkers, including ultrasound data on fetal size, and maternal and fetal Doppler analysis
of vascular resistance, which we have not included so far in this work. The ML analysis on
these results supports the potential use of these parametric biomarkers in measuring FGR
and providing an estimate of severity, including an indication of the likely GA at delivery.
In addition to these biomarkers, future work could systematically include volumetric data
on the brain, lungs, liver, and placenta to better enhance the ML models. However, the
data was unregistered, did not use 3D reconstruction and would require direct comparisons
to pre-published normative curves to know how lung/organ volume changes with gestation
to incorporate fully. It is also important to note that the method employed assumes the
delivery time of each subject was optimal, which although extracted from an early-onset
clinic with specialised treatment, this may not be always the case, inducing biases.

The deep learning extension implemented to target this regression problem showcases
potential avenues for future work with this type of voxelwise organ model fitted maps.
These maps contain important spatial information, which proved useful to assess postnatal
baby weight. Future work on deep learning should focus on appropriately selecting the
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input channel features, by conducting detailed assessments on the level of noise against
information quality and significance.

Analysis on parameter correlations indicated that as the perfusion fraction in the liver
and placenta decreased, the more severely growth-restricted the FGR fetuses were. This
corroborated our initial hypotheses for selecting the fetal liver and placenta as severely-
affected organs in FGR, with SNR perhaps too low and variability too high to observe
differences in the fetal brain and lung. However, further work is needed to refine the
analysis of the signals from these organs to better study the impact of FGR.

Moreover, reliance of ML models on ‘Big Data’ (Wang and Alexander (2016)), moti-
vates the need for a larger dataset, or data augmentation techniques to improve model
performance and reduce generalisation error. Increased data availability could enable deep
learning models, such as CNNs, which show potential for large-scale diagnosis improvement
(Yadav and Jadhav (2019)), compared to traditional ML models. Our dataset of 24 subjects
limits the results and conclusions from being generalised to the population. But this was
not the purpose of the study. Rather, we sought to investigate the concepts and statisti-
cal methods employed in this paper. Future work could extend the methods to additional
pregnancy complications to diagnose not only, FGR and non-FGR, but also the presence of
other pregnancy conditions.

6. Conclusion

In this proof-of-concept we proposed an approach to automate diagnosis of FGR using
parameters extracted from the fetal liver and placenta, supported by the application of
texture analysis. This preliminary investigation has demonstrated the potential of the
models in assessing vascular properties of highly-perfused fetal organs, determined by multi-
compartmental model fitting techniques. The placenta and fetal liver were prominent organs
in identifying FGR fetuses, with key parametric features indicating a reduced perfusion,
oxygenation and fetal capillary blood motion in these organs.

Our results prove that applying IVIM-based models on organs segmented from MRI
scans generates features which are descriptive of FGR, i.e. potential biomarkers, enabling
to construct simple machine learning models to predict diagnosis and offer insights into
severity of the condition. The detailed voxel-level nature of our maps additionally enables
deep learning experiments for condition severity assessments.

We validated our methodology on twenty-three FGR and control cases, achieving partic-
ularly optimal results for diagnosis classification. Our research exemplifies how ML models
can be incorporated into the diagnostic workflow, as well as its potential to indicate severity
of the condition. Future work into multi-organ fetal analysis will extend these techniques
to other placental complications into a larger-scale study, using more complex ML and deep
learning models.
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Appendix A. Voxelwise Feature Importances

A total of 345 voxelwise measurements were extracted from the model fitting. Table 5
displays 50 of the features in order of feature importance in predicting an FGR diagnosis.
This is an extended version of Table 1.

Model Fit-
ting Tech-
nique

Parameter Average
Metric

Pairwise
Group
Compari-
son

Organ T Statistic P-Value

Dependent
IVIM

D* Mean Control vs
FGR

Placenta -4.597300242 0.00015589

Extended
2xT2 Depe-
dent IVIM

D* Mean Control vs
FGR

Placenta -4.560436097 0.000170214

DECIDE
Model (Vox-
elwise Mea-
surements)

D* Mean Control vs
FGR

Placenta -4.205788361 0.00039723

Extended
2xT2 Depe-
dent IVIM

Perfusion
Fraction

Min Control vs
FGR

Placenta 3.725183003 0.001250966

Extended
2xT2 Depe-
dent IVIM

Perfusion
Fraction

Mode Control vs
FGR

Placenta 3.725183003 0.001250966

Standard
IVIM

Perfusion
Fraction

Median Control vs
FGR

Liver 3.624757118 0.001587669

Dependent
IVIM

T2 Min Control vs
FGR

Placenta 3.463092031 0.002326109

Extended
2xT2 Depe-
dent IVIM

Perfusion
Fraction

Median Control vs
FGR

Placenta 3.27041186 0.003653498

Dependent
IVIM

Perfusion
Fraction

Min Control vs
FGR

Placenta 3.249455242 0.003836258

Dependent
IVIM

Perfusion
Fraction

Mode Control vs
FGR

Placenta 3.249455242 0.003836258

Standard
IVIM

D* Mean Control vs
FGR

Placenta -3.155410162 0.004771861

T2 Fitting T2 Mode Control vs
FGR

Placenta 3.076054116 0.005730308

T2 Fitting T2 Min Control vs
FGR

Placenta 3.076054116 0.005730308

Dependent
IVIM

Perfusion
Fraction

Max Control vs
FGR

Placenta -2.908584282 0.008399742

DECIDE
Model (Vox-
elwise Mea-
surements)

Perfusion
Fraction

Mean Control vs
FGR

Placenta -2.860182788 0.009371321

Extended
2xT2 Depe-
dent IVIM

Perfusion
Fraction

Mode Control vs
FGR

Brain -2.846049894 0.010722475

Extended
2xT2 Depe-
dent IVIM

Perfusion
Fraction

Max Control vs
FGR

Brain -2.846049894 0.010722475

Dependent
IVIM

D* Min Control vs
FGR

Placenta 2.749012922 0.012025317

Dependent
IVIM

Perfusion
Fraction

Median Control vs
FGR

Placenta 2.746991901 0.012079621
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Extended
2xT2 Depe-
dent IVIM

Fetal Blood
T2

Min Control vs
FGR

Placenta 2.661186891 0.014612077

ADC Fitting ADC Mode Control vs
FGR

Placenta 2.60516097 0.016528088

ADC Fitting ADC Min Control vs
FGR

Placenta 2.60516097 0.016528088

DECIDE
Model (Vox-
elwise Mea-
surements)

Perfusion
Fraction

Mode Control vs
FGR

Placenta 2.602142163 0.01663777

DECIDE
Model (Vox-
elwise Mea-
surements)

Perfusion
Fraction

Min Control vs
FGR

Placenta 2.602142163 0.01663777

Dependent
IVIM

Perfusion
Fraction

Mean Control vs
FGR

Placenta 2.589134143 0.017118271

Standard
IVIM

Perfusion
Fraction

Mean Control vs
FGR

Liver 2.539211902 0.019086068

Standard
IVIM

S0 Median Control vs
FGR

Placenta 2.502100007 0.020684193

T2 Fitting T2 Median Control vs
FGR

Placenta 2.484716827 0.021475009

Standard
IVIM

S0 Mode Control vs
FGR

Placenta 2.467133972 0.022303541

Standard
IVIM

S0 Min Control vs
FGR

Placenta 2.467133972 0.022303541

Standard
IVIM

Tissue T2 Mean Control vs
FGR

Placenta 2.456622652 0.022812982

Extended
2xT2 Depe-
dent IVIM

Perfusion
Fraction

Median Control vs
FGR

Placenta 2.415973093 0.024886753

Standard
IVIM

Perfusion
Fraction

Max Control vs
FGR

Placenta -2.412729204 0.02505957

Extended
2xT2 Depe-
dent IVIM

D* Mode Control vs
FGR

Liver -2.402194517 0.025628509

Dependent
IVIM

D* Max Control vs
FGR

Placenta -2.271942855 0.033722187

Dependent
IVIM

T2 Max Control vs
FGR

Liver 2.256543771 0.034820546

Dependent
IVIM

T2 Median Control vs
FGR

Placenta 2.248766366 0.035387639

DECIDE
Model (Vox-
elwise Mea-
surements)

D* Mode Control vs
FGR

Placenta 2.223360922 0.037299443

Dependent
IVIM

D* Min Control vs
FGR

Placenta 2.223360922 0.037299443

ADC Fitting ADC Mode Control vs
FGR

Lung -2.201659535 0.039006645

ADC Fitting ADC Min Control vs
FGR

Lung -2.201659535 0.039006645

Extended
2xT2 Depe-
dent IVIM

Tissue T2 Min Control vs
FGR

Brain -2.179361415 0.042831566

T2 Fitting S0 Mode Control vs
FGR

Placenta 2.138821399 0.044358479
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T2 Fitting S0 Min Control vs
FGR

Placenta 2.138821399 0.044358479

ADC Fitting S0 Median Control vs
FGR

Placenta 2.127953943 0.04534878

DECIDE
Model (Vox-
elwise Mea-
surements)

Maternal
Blood Vol-
ume

Median Control vs
FGR

Placenta 2.08157448 0.049803299

Standard
IVIM

Perfusion
Fraction

Median Control vs
FGR

Placenta 2.063763284 0.051616017

Extended
2xT2 Depe-
dent IVIM

S0 Mean Control vs
FGR

Brain -2.057178836 0.054456083

Dependent
IVIM

S0 Mode Control vs
FGR

Placenta 2.003124411 0.058239086

Dependent
IVIM

S0 Min Control vs
FGR

Placenta 2.003124411 0.058239086

Table 5: Hierarchy of parameter feature importances of the voxelwise measurements (top
50 features).
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Appendix B. Haralick Feature Importances

A total of 172 Haralick features were extracted, 50 of which are displayed in Table 6 in
order of feature importance.

Model Fit-
ting Tech-
nique

Parameter Haralick
Feature

Pairwise
Group
Compari-
son

Organ T Statistic P-Value

Extended
2xT2 De-
pendent
IVIM

D* Mean Vari-
ance

Control vs
FGR

Placenta 3.85713275 0.000913732

Extended
2xT2 De-
pendent
IVIM

D* Mean Con-
trast

Control vs
FGR

Placenta -3.59999694 0.001683568

Extended
2xT2 De-
pendent
IVIM

D* Mean Energy Control vs
FGR

Placenta -3.52882897 0.001992104

Extended
2xT2 De-
pendent
IVIM

D* Mean Energy Control vs
FGR

Placenta 3.47784754 0.002246655

Extended
2xT2 De-
pendent
IVIM

D* Max Correla-
tion

Control vs
FGR

Placenta 3.314572951 0.003295715

T2 Fitting Perfusion
Fraction

Mean Corre-
lation

Control vs
FGR

Placenta -3.24466242 0.003879289

Extended
2xT2 De-
pendent
IVIM

D* Max Homo-
geneity

Control vs
FGR

Placenta -3.01289081 0.006623681

T2 Fitting Perfusion
Fraction

Mean Con-
trast

Control vs
FGR

Placenta 2.8780617 0.00900053

Standard
IVIM

Perfusion
Fraction

Max Con-
trast

Control vs
FGR

Liver 2.843764223 0.00972465

Extended
2xT2 De-
pendent
IVIM

D* Mean Homo-
geneity

Control vs
FGR

Placenta -2.7464043 0.012095454

b=0 Volume - Max correla-
tion

Control vs
FGR

Liver -2.69457234 0.01357218

Standard
IVIM

Perfusion
Fraction

Mean En-
tropy

Control vs
FGR

Liver 2.672682492 0.014245788

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Max Energy Control vs
FGR

Liver -2.65258805 0.014891863

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Mean En-
tropy

Control vs
FGR

Liver 2.63659631 0.015425697

Standard
IVIM

Perfusion
Fraction

Max Entropy Control vs
FGR

Liver 2.629661922 0.015662746

b=0 Volume - Max Energy Control vs
FGR

Lung -2.62851088 0.015702425

ADC Fitting Perfusion
Fraction

Mean Vari-
ance

Control vs
FGR

Lung -2.2586354 0.015794044
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Standard
IVIM

Perfusion
Fraction

Mean Vari-
ance

Control vs
FGR

Liver -2.61635759 0.016127196

Standard
IVIM

Perfusion
Fraction

Mean Con-
trast

Control vs
FGR

Liver 2.589841409 0.017091814

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Mean Energy Control vs
FGR

Liver -2.56185367 0.018168659

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Max Entropy Control vs
FGR

Liver 2.547927974 0.018727882

b=0 Volume - Mean En-
tropy

Control vs
FGR

Lung -2.54682773 0.018772746

b=0 Volume - Mean Vari-
ance

Control vs
FGR

Lung -2.5463024 0.018794203

Standard
IVIM

Perfusion
Fraction

Max Energy Control vs
FGR

Liver -2.54431325 0.018875657

ADC Fitting Perfusion
Fraction

Mean Energy Control vs
FGR

Lung -2.54246834 0.0189515

Standard
IVIM

Perfusion
Fraction

Mean Energy Control vs
FGR

Liver -2.52318667 0.019761426

ADC Fitting Perfusion
Fraction

Mean En-
tropy

Control vs
FGR

Lung 2.519857262 0.019904517

b=0 Volume - Mean En-
tropy

Control vs
FGR

Lung 2.514269872 0.020146831

T2 Fitting Perfusion
Fraction

Max Homo-
geneity

Control vs
FGR

Placenta 2.497234523 0.020902754

ADC Fitting Perfusion
Fraction

Mean Vari-
ance

Control vs
FGR

Lung -2.4836657 0.021523722

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Mean Vari-
ance

Control vs
FGR

Liver -2.44831811 0.023223109

b=0 Volume - Mean Corre-
lation

Control vs
FGR

Placenta -2.4461168 0.023332967

Standard
IVIM

Perfusion
Fraction

Max Correla-
tion

Control vs
FGR

Liver -2.42840779 0.024234499

b=0 Volume - Max Homo-
geneity

Control vs
FGR

Placenta 2.413012066 0.025044456

b=0 Volume - Max Energy Control vs
FGR

Liver -2.37816262 0.02697148

T2 Fitting Perfusion
Fraction

Max Correla-
tion

Control vs
FGR

Placenta -2.37038089 0.027420117

b=0 Volume - Mean Homo-
geneity

Control vs
FGR

Liver 2.334287019 0.02959262

b=0 Volume - Max Con-
trast

Control vs
FGR

Liver 2.281290927 0.033071008

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Max Con-
trast

Control vs
FGR

Liver 2.279938553 0.033164494

b=0 Volume - Max Vari-
ance

Control vs
FGR

Lung -2.27647378 0.033405112

b=0 Volume - Mean En-
tropy

Control vs
FGR

Liver 2.267311575 0.034049134
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b=0 Volume - Mean Energy Control vs
FGR

Liver -2.25902498 0.034641385

b=0 Volume - Mean Con-
trast

Control vs
FGR

Liver 2.25382319 0.035017302

Extended
2xT2 De-
pendent
IVIM

Perfusion
Fraction

Mean Con-
trast

Control vs
FGR

Liver 2.243927048 0.035744752

T2 Fitting Perfusion
Fraction

Mean Homo-
geneity

Control vs
FGR

Placenta 2.243681655 0.035762948

b=0 Volume - Max Entropy Control vs
FGR

Liver 2.238043495 0.036183359

ADC Fitting Perfusion
Fraction

Max Vari-
ance

Control vs
FGR

Lung -2.22990394 0.036798255

b=0 Volume - Mean Vari-
ance

Control vs
FGR

Liver -2.20345811 0.038862496

b=0 Volume - Max Entropy Control vs
FGR

Lung 2.200623685 0.039096886

ADC Fitting Perfusion
Fraction

Max Entropy Control vs
FGR

Lung 2.195186635 0.039529463

Table 6: Hierarchy of most significant Haralick features across parameter maps and organs
(top 50 features).
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