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Abstract

Deep learning methods have become the state of the art for undersampled MR recon-
struction. Particularly for cases where it is infeasible or impossible for ground truth, fully
sampled data to be acquired, self-supervised machine learning methods for reconstruction
are becoming increasingly used. However potential issues in the validation of such meth-
ods, as well as their generalizability, remain underexplored. In this paper, we investigate
important aspects of the validation of self-supervised algorithms for reconstruction of un-
dersampled MR images: quantitative evaluation of prospective reconstructions, potential
differences between prospective and retrospective reconstructions, suitability of commonly
used quantitative metrics, and generalizability. Two self-supervised algorithms based on
self-supervised denoising and the deep image prior were investigated. These methods are
compared to a least squares fitting and a compressed sensing reconstruction using in-vivo
and phantom data. Their generalizability was tested with prospectively under-sampled data
from experimental conditions different to the training. We show that prospective recon-
structions can exhibit significant distortion relative to retrospective reconstructions/ground
truth. Furthermore, pixel-wise quantitative metrics may not capture differences in per-
ceptual quality accurately, in contrast to a perceptual metric. In addition, all methods
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showed potential for generalization; however, generalizability is more affected by changes in
anatomy/contrast than other changes. We further showed that no-reference image metrics
correspond well with human rating of image quality for studying generalizability. Finally,
we showed that a well-tuned compressed sensing reconstruction and learned denoising per-
form similarly on all data. The datasets acquired for this paper will be made available
online; see https://www.melba-journal.org/papers/2022:022.html for details.

Keywords: Deep Learning, Self-Supervised Learning,MR Image Reconstruction, Valida-
tion, Generalizability

1. Introduction

Since the introduction of MRI, methods for image reconstruction have evolved with acqui-
sition acceleration and have seen great advances with parallel imaging techniques such as
sensitivity encoding (SENSE) (Pruessmann et al., 1999) and generalized auto-calibrating
partially parallel acquisition (GRAPPA) (Griswold et al., 2002). While parallel imaging re-
liably accelerates clinical contrasts by factors of two to three, more recent methods such as
compressed sensing (CS) have achieved even higher acceleration factors (Lustig et al., 2007).
Now, supervised deep learning methods reign as the state of the art in the reconstruction
of accelerated acquisitions (Knoll et al., 2020a; Hammernik and Knoll, 2020; Sun et al.,
2016). However, these supervised methods require a non-trivial amount of fully sampled
data to use as ground truth/target, which can be difficult or infeasible to obtain depending
on the type of acquisition. Consequently, there has been interest in unsupervised or self-
supervised, deep learning approaches which train solely on accelerated acquisitions, with no
need for ground truth, fully sampled data (Liu et al., 2020; Yaman et al., 2020; Heckel and
Hand, 2019; Akçakaya et al., 2021).

However, the validation of these methods is generally done by quantitative evaluation
through pixel-wise metrics on retrospectively undersampled acquisitions (i.e., artificial
undersampling of a fully sampled dataset), sometimes accompanied by qualitative evaluation
on datasets where no ground truth is available. This limitation may stem from commonly
used datasets (Epperson et al., 2013; Knoll et al., 2020b) being fully sampled, as well as
difficulties in acquiring datasets which contain both fully sampled and prospectively accel-
erated scans without motion corruption. However, this neglects quantitative evaluation of
reconstructions from prospectively undersampled data, the clinically relevant scenario,
as well as potential differences between prospective and retrospective reconstructions; fur-
thermore, the pixel-wise metrics generally used may not correlate well with the perceptual
quality of the images. This point is crucial for clinical deployment as even if different meth-
ods can be robustly ranked using retrospective data, the image quality from prospective
data from the different methods may be unsuitable for clinical use. Furthermore, if these
techniques will be used in future clinical routines, they likely will be subject to variations of
data quality and content. For example, different surface coils, parameter differences between
centers or even the use of the same sequence on different organs. Therefore, the general-
izability, i.e., inference data different from the training/tuning data (e.g. in terms of field
strength, sequence parameters, motion, anatomy, etc.), using prospective data is of inter-
est, both for investigating robustness and for testing the limits of self-supervised methods.
Furthermore, while prospective reconstructions are generally evaluated using qualitative
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rating, we evaluated the potential for using no-reference image metrics for a quantitative
evaluation.

1.1 Contributions

In this work, we fixed an MR sequence of interest for which extensive, clinical acquisition of
fully sampled data is infeasible and conducted an extensive, realistic validation of state of
the art self-supervised reconstruction methods through two novel, overarching experiments.

1. In contrast to the literature, we acquired phantom data with both full sampling and
prospective acceleration. This allowed us to quantitatively and qualitatively evaluate
both prospective and retrospective reconstructions using both pixel-wise and percep-
tual metrics for fidelity to ground truth, allowing us to study them individually as
well as to see any relevant differences.

2. In contrast to the literature, we tested the generalizability of the methods using an
extensive, prospectively accelerated dataset with changes in contrast, hardware, field
strength, and anatomy. Furthermore, we evaluated the results both quantitatively,
using no-reference image quality metrics, and qualitatively, using rating by MR sci-
entists and a radiologist.

2. Theory

The self-supervised, machine-learning based methods we examine in this paper rely on two
powerful ideas drawn from machine learning: self-supervised denoising and restriction to
the range of convolutional neural networks (CNN) as an effective prior for image recon-
struction. We chose these methods for validation as these ideas have been shown to be both
empirically effective and theoretically well founded, making them attractive for clinical use.
In Figure 1, we show an overview of the different methods used in this paper. We begin with
the basic inverse problem formulation of MR image reconstruction. Let yi,ni denote the
undersampled MR measurements and Gaussian noise respectively, from the ith coil element
and x denote the underlying image. These quantities are related by:

yi = Aix+ ni, (1)

Ai = M ◦ F ◦ Si (2)

where M is the element-wise multiplication by a mask (corresponding to the location of the
undersampled measurements), F denotes the Fourier transform, and Si denotes element-
wise multiplication by the ith sensitivity map. The classical regularized reconstruction of
x is the solution of an optimization problem

x = argmin
x
′

D(x′,y) + λR(x′), (3)

where D(x,y) measures the consistency of the solution to the data (e.g. ∥Aix−yi∥
2), R(x)

is a regularization function, which, for example, prevents overfitting to the noise, and λ

is the regularization parameter. In combination with incoherently undersampled measure-
ments, compressed sensing reconstructions have been shown to effectively reconstruct the
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underlying images by setting R(x) to encourage sparsity of x in a set domain (Lustig et al.,
2007). Many state of the art deep learning methods, both supervised and unsupervised,
implicitly or explicitly parametrize R(x) with a neural network. In this work, we choose
to compare two state-of-the-art self-supervised approaches which operate by orthogonal,
well-founded theoretical principles with impressive empirical performance.

2.1 DeepDecoder

The first self-supervised method we examine is called DeepDecoder. DeepDecoder is based
on a seminal work in the machine learning literature called Deep Image Prior (DIP) (Ulyanov
et al., 2018) which showed that untrained CNNs could be used to effectively solve inverse
problems without ground truth. Concretely, let fθ denote a randomly initialized CNN with
parameters θ. Let z be a sample of a random, Gaussian vector. Then DIP solves Equation
3 by

x = fθ(z) = argmin
θ′

∥Aifθ′(z)− yi∥
2 (4)

This formulation is equivalent to setting R(x) to the indicator function with support over the
range of the neural network; this assumes that the convolutional network fθ itself provides
a strong prior on the space of image solutions, such that only the data consistency term
needs to be minimized. However, since only the noisy signal y is used during training,
minimization can overfit the noise in the signal, depending on the inverse problem being
solved (e.g. denoising, super-resolution), thus requiring early stopping (Ulyanov et al.,
2018). DeepDecoder (Heckel and Hand, 2019) is a CNN with a simplified architecture
(only upsampling units, pixel-wise linear combination of channels, ReLU activation, and
channel-wise normalization) which is amenable to theoretical analysis and was shown to be
competitive with other architectures for solving inverse problems in a DIP framework.

In (Heckel and Soltanolkotabi, 2020), the authors theoretically showed that for the case
of image recovery from compressed sensing measurements, CNNs (in particular, CNNs with
the structure of DeepDecoder) are self-regularizing with respect to noise and can simply be
trained to convergence with gradient descent without early stopping or additional regular-
ization, provided that the true, underlying image has sufficient smoothness/structure. In a
knee MR example, they showed that early stopping would have only provided a marginally
better solution than running to convergence. Hence, from a theoretical and practical stand-
point, DeepDecoder is attractive for self-supervised reconstruction from undersampled mea-
surements. We emphasize that DeepDecoder entails training a separate network for each
separate acquisition/slice, rather than training a single network over a dataset of under-
sampled acquisitions.

2.2 Self-supervised learning via data under-sampling

The second self-supervised method we examine is called Self-supervised learning via data
under-sampling (SSDU). SSDU uses an unrolled, iterative architecture, with alternating
neural network and data consistency modules, to reconstruct MR images using only under-
sampled measurements, with the adjoint image corresponding to the input k-space mea-
surements as an initial guess. It solves Eqn 3 using an iterative, variable splitting approach
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where the kth iteration consists of

x̂k = CNN(xk−1) (5)

xk = argmin
x
′

∥Aix
′ − yi∥

2 + λ∥x′ − x̂k∥2. (6)

where the superscript denotes the iteration, CNN denotes a generic CNN, and x̂k denotes
an auxiliary variable. The regularization parameter λ is learned during training. Let fSSDU

denote the function defined by the unrolled network. In each training step of SSDU, the
k-space of the data is split into two, random disjoint sets, denoted by yΘ and yΛ. yΘ is
passed to the unrolled network as input. The loss function for SSDU compares the simulated
k-space measurements of the corresponding image output fSSDU (yΘ) to yΛ:

L(yΛ, AΛfSSDU (yΘ)) (7)

where AΛ is the measurement operator corresponding to sampling the locations of Λ, and
L is an equally weighted combination of the L1 and L2 loss. Hence, during each training
step, fSSDU only sees information from yΘ, and the loss is only computed over a disjoint set
yΛ. We note that at inference time, the entire, acquired k-space measurements are given as
input. While the authors of SSDU give an intuitive explanation of this approach as similar
to cross validation in order to prevent overfitting to noise or learning the identity, results
from the machine learning literature on blind, signal denoising can help give a theoretical
explanation.

In the Noise2Self framework (Batson and Royer, 2019), the authors prove that a neural
network can be trained to denoise a noisy signal, using solely the noisy signal for training.
In the following, we describe a special case of the general theory proven in (Batson and
Royer, 2019). Let yδ = y+n denote a noisy signal, where y,n are the noise-free signal and
Gaussian noise respectively. Partition yδ into disjoint sets, yδ

J
and yδ

JC , where the subscript
indicates restriction of the corresponding vectors to the disjoint subsets of indices J, JC ,
with other indices being zero-filled. Then the authors showed that that a neural network
(denoted as f) can be trained to denoise the noisy signal, using solely the noisy signal, by
using the following loss function:

L(f) =
∑

J

E ∥fJ(y
δ
Jc)− yδ

J∥
2 =

∑

J

E ∥fJ(y
δ
Jc)− yJ∥

2 + ∥yδ − y∥2 (8)

We emphasize that the right hand side of Equation 8 is composed of the mean squared error
between the signal predicted by the network and the ground-truth signal and a constant
independent of the network. Hence the Noise2Self strategy allows to minimize the
error between the predicted signal and the ground truth signal with only access
to the noisy signal, by iteratively giving a partition of the noisy signal as input
to f and computing the MSE over a disjoint partition. Identifying Θ,Λ with J, Jc,
we can see that the training of SSDU conforms to the Noise2Self framework with the k-space
measurements acting as the noisy signal, albeit with SSDU using an L1 loss in addition to
the L2 loss. Thus, SSDU takes as input the noisy, acquired k-space measurements, and
is optimized to output an image whose simulated k-space measurements are the acquired
k-space measurements without noise. In this way, SSDU avoids overfitting to noise.
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This, combined with the powerful image prior from using a CNN as the neural network
as well as the interleaving of the data consistency term, explains SSDU’s demonstrated
ability to provide denoised images which retain image sharpness, as compared to traditional
methods. We can interpret SSDU as an iterative method which interleaves the application
of a denoising network and a data consistency step. We note in contrast to DeepDecoder,
that we can train different networks for separate acquisitions or train a single, reusable
network on a dataset of undersampled acquisitions. In this paper, we do the latter.

In conclusion, both self-supervised approaches accomplish noise robust MR reconstruc-
tion using only noisy, undersampled MR measurements;

3. Methods

In the following experiments, we compare four image reconstruction methods:

1. CG-SENSE, which solves Equation 3 with no regularization using the conjugate
gradient algorithm; this is a least squares fit to the acquired data similar to the
description in (Pruessmann et al., 2001).

2. CS-L1Wavelet, where we solve Equation 3 with a compressed sensing reconstruc-
tion, with R(x) = ∥Wx∥1, where W is a wavelet transform operator. We set the
regularization parameter λ to 2.3e-4 according to a Noise2Self tuning described in the
appendix.

3. DeepDecoder with a depth/width of 300/10 and Gaussian input of size (10,10).

4. SSDU, where we use a U-Net (Ronneberger et al., 2015) with 12 channels and 4
downsampling/upsampling layers. Training (Θ) and testing (Λ) masks are randomly
sampled uniformly, with a split of 60 and 40 percent respectively.

We used Sigpy(Ong and Lustig, 2019) for the computation of CS-L1Wavelet and ES-
PiRiT(Uecker et al., 2014) sensitivity maps. We implemented CG-SENSE and SSDU in
Pytorch (Paszke et al., 2019), and we used Github implementations of DeepDecoder † and
U-Net ‡. We used Adam (Kingma and Ba, 2014) to optimize both SSDU and DeepDe-
coder. SSDU was trained until convergence (10 epochs) with a learning rate of 0.5e-4. For
each subject, DeepDecoder was optimized using the acceleration strategy in (Darestani and
Heckel, 2021); a single slice for each subject is optimized to convergence (over 10,000 it-
erations) from a random initialization. All other slices are optimized for 1,000 iterations,
initialized with the network model from this single slice. All training and inference was
done on a NVIDIA Quadro RTX 8000 with 45GB of RAM.

3.1 Training Data and Hyperparameter Tuning

To mimic a realistic scenario with a sequence for which fully sampled, ground truth data is
difficult/infeasible to acquire, and where the training dataset is limited in size and variabil-
ity, we acquired for ten healthy subjects a 5x accelerated 3D MPRAGE prototype sequence

†. https://github.com/MLI-lab/cs deep decoder
‡. https://github.com/facebookresearch/fastMRI
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Figure 1: An overview of the basic formulation of the MR reconstruction inverse problem,
as well as how each method in the paper solves the inverse problem.
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(Mussard et al., 2020) of the brain at 3T (MAGNETOM PrismaFit, Siemens Healthcare,
Erlangen, Germany) using a 64ch Rx Head/Neck coil. These incoherently undersampled
data were used for training/tuning the hyperparameters of all reconstruction methods. In
what follows, all training/inference is done on 2D slices of both phase-encoding directions
formed from performing the inverse Fourier transform along the readout direction. We em-
phasize that in the absence of prior knowledge/heuristics, the hyperparameters
of the methods should also be tuned in a self-supervised way, as the common
method for hyperparameter tuning, i.e. using a hold-out set of data for which
the ground truth is known, is not available in our scenario. We use the Noise2Self
framework, which also underlies SSDU, for selecting hyperparameters (regularization pa-
rameter of CS-L1Wavelet and the network parameters of DeepDecoder and SSDU), as it
optimizes for preventing overfitting to the noise in the measurements. Details on the hy-
perparameter tuning can be found in the Appendix.

3.2 Validation using Prospectively Accelerated and Fully Sampled Data

In our first experiment, using the aforementioned 3D MPRAGE prototype sequence used
for acquiring the training/tuning data, we acquired both fully sampled and 5x prospectively
accelerated scans of the following:

1. Siemens multi-purpose phantom E-38-19-195-K2130 filled with MnCl2 · 4H2O doped
water

2. Assortment of fruits/vegetables (Pineapple, tomatoes, onions, brussel sprouts)

This allowed us to reconstruct prospective, retrospective (applying the same mask as in
prospective sampling on the fully sampled data), and fully-sampled images.

No in-vivo data was used in this experiment since subject motion could bias the results.
Furthermore, we used fruits/vegetables as a second phantom since they have more complex
structures than a water filled container.

3.2.1 Quantitative Assessment

First, we qualitatively compared the results through visual inspection. Second, we quan-
titatively compare reconstructions to the ground truth using Peak Signal to Noise Ratio
(PSNR) (Salomon, 2004), the Structural Similarity Index Measure (SSIM) (Wang et al.,
2004), and a metric we will call the Perceptual Distance (PercDis) score. While the first
two are commonly used metrics in MR image reconstruction/image reconstruction in gen-
eral, the PercDis score comes from computer vision (super-resolution, style transfer, etc),
where it is called the perceptual loss (Johnson et al., 2016); the distance between two images
is defined as the L1 distance between the respective induced features from intermediate lay-
ers of a pretrained image classification network. The scores of center cropped slices, along
the read-out direction, are averaged for the final score.
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3.3 Generalizability of Self-Supervised Reconstruction Methods

In our second experiment, we examined the generalizability of the reconstruction methods.
To that end, we scanned three, healthy subjects with the following prospectively accelerated
sequences(anatomy):

1. 1.5T MPRAGE (Brain)

2. 3T MPRAGE (Brain)

3. 7T MPRAGE (Brain)

4. 3T MPRAGE with 1Tx/20Rx Coil (Brain)

5. 3T MPRAGE with Subject Motion (Brain)

6. 3T MPRAGE with Different Parameters (Brain)

7. 3T, T1 SPACE (Brain)

8. 3T, T2 FLAIR SPACE (Brain)

9. 3T, PD SPACE (Knee)

10. 3T, T2 SPACE (Knee)

The brain scans at 1.5T, 3T and 7T (MAGNETOM Sola, Vida, and Terra, Siemens
Healthcare, Erlangen, Germany) were done using a 1Tx/20Rx, 1Tx/64Rx (unless otherwise
stated), and 8pTx/32Rx (Nova Medical, Wilmington, MA, USA) head coil, respectively.
The knee scans at 3T were done with a 1Tx/18Rx coil. All detailed sequence parameters
can be found in the Appendix in Table 2.

As ground truth data is not available since motion would render quantitative comparison
difficult due to blurring from image co-registration, we evaluated the reconstructions from
the above data quantitatively through no-reference image quality metrics and qualitatively
through rating by four MR scientists and a radiologist. In total, 120 reconstructions (40
per subject) were evaluated.

3.3.1 No-Reference Image Metrics

No-reference image quality metrics quantify the quality of a given image (i.e. blurriness,
noise) using only its statistical features in a way that correlates with the perceptual quality
of a human observer. They have been shown to potentially be useful for MR/medical image
evaluation without ground truth (Woodard and Carley-Spencer, 2006; Zhang et al., 2018);
we use the following three metrics: a metric used originally for assessing the quality of JPEG-
compressed images which we call NRJPEG (Wang et al., 2002), the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) (Mittal et al., 2011), and Perception based
Image Quality Evaluator (PIQE) (Venkatanath et al., 2015). BRISQUE and PIQE have also
been used in other image reconstruction challenges where the ground truth is not available,
such as super-resolution (Lugmayr et al., 2020). The metrics were calculated for the central
100 slices (along the read-out direction) of each reconstruction.
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3.3.2 Human Quality Rating

The human quality rating was done according to (Hammernik et al., 2018) by four experi-
enced MR scientists and a radiologist. Using a 4-point ordinal scale, reconstructed images
were evaluated for sharpness (1: no blurring, 2: mild blurring, 3: moderate blurring, 4:
severe blurring), SNR (1: excellent, 2: good, 3: fair, 4: poor), presence of aliasing artifacts
(1: none, 2: mild, 3: moderate, 4: severe) and overall image quality (1: excellent, 2: good,
3: fair, 4: poor). Raters were blinded to the reconstruction method.

3.4 Statistical Significance

For all quantitative metrics/ratings, we use the Wilcoxon signed rank test with significance
level 0.05

6 (Bonferroni correction with 6 pair-wise comparisons among the 4 methods) to
determine statistical significance.

4. Results

In general, perceptually, CG-SENSE produces noisy but sharp images since it is not regu-
larized. DeepDecoder produces smoother reconstructions with spatially varying noise be-
havior and sharpness, e.g Figure 2 (yellow arrows). CS-L1Wavelet and SSDU produce
similar images, smoother than those of CG-SENSE with comparable sharpness; however,
CS-L1Wavelet exhibits more artifacts, e.g Figure 2 (red arrows).

4.1 Validation Using Prospectively Accelerated and Fully Sampled Data

In Fig. 2 and Fig. 3, we can see spatial distortions of hyper/hypo-intense features in
the prospective reconstructions and changes in contrast in comparison to the ground truth
reconstruction; this distortion is not present in the retrospective reconstructions; however,
they are similar across all reconstruction methods.

Retrospective reconstructions have significantly higher mean scores for all metrics in
comparison to the prospective reconstructions in both acquisitions (see Table 1).

Comparing the methods, in the phantom, the prospective/retrospective reconstructions
of DeepDecoder have the highest pixel-wise fidelity to the ground truth with a mean PSNR of
(18.67/23.44) and SSIM of (0.49/0.52); however, qualitatively, it has more spatially varying
oversmoothing than those of CS-L1Wavelet and SSDU. SSDU and CS-L1Wavelet perform
similarly, with the highest qualitative similarity to the ground truth, with SSDU having a
higher mean PSNR overall (17.79/21.95). In contrast to the PSNR/SSIM results, with the
PercDis score, SSDU has the highest fidelity to the ground truth (0.63/0.61).

Qualitatively and quantitatively (with PSNR and SSIM), the differences between the
methods are much less in the fruits/vegetables. The main qualitative difference is the
greater denoising capabilities of SSDU and CS-L1Wavelet in comparison to CG-SENSE
and DeepDecoder. Quantitatively, there are only minor differences between the methods
with respect to PSNR and SSIM. In contrast, the PercDis scores clearly indicate that CS-
L1Wavelet and SSDU (with similar scores) are perceptually more similar to the ground
truth than CG-SENSE and DeepDecoder (with similar scores).
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Figure 2: Ground truth images and reconstructed images using prospectively and ret-
rospectively accelerated data from the multi-purpose phantom, scanned with
a MPRAGE sequence at 3T. Reconstructions from prospectively accelerated
data are distorted (see closeups) relative to the ground truth/retrospective re-
constructions. DeepDecoder exhibits spatially varying smoothness/distortion
(see yellow arrows) relative to CS-L1Wavelet and SSDU which have similar
scores/appearance, although CS-L1Wavelet has more artifacts (see red arrows).
CG-SENSE produces noisy but sharp reconstructions, while CS-L1Wavelet and
SSDU reduce noise but preserve sharpness relative to CG-SENSE.
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Figure 3: Ground truth images as well as reconstructed images using prospectively
and retrospectively accelerated data from the fruits/vegetables, scanned with
a MPRAGE sequence at 3T. Reconstructions from prospectively accelerated
data are distorted in hypointense regions (see closeup/red arrows) relative
to the ground truth/retrospective reconstructions. Qualitatively, the main
difference between the methods are between CS-L1Wavelet/SSDU and CG-
SENSE/DeepDecoder, where the former group is smoother than the latter.
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PSNR ↑ Phantom Fruits/Vegetables

(µ, σ) Prospective Retrospective Prospective Retrospective

CG-SENSE (13.54,9.69) (16.82,12.17) (33.4,4.86) (39.3,5.73)
CS-L1Wavelet (16.0,8.36) (20.62,11.65) (33.59,3.83) (38.88,4.44)
DeepDecoder (18.67,6.65) (23.44,10.66) (33.65,2.86) (38.25,4.42)
SSDU (17.79,6.9) (21.95,10.09) (33.88,3.75) (39.49,4.27)

SSIM ↑

(µ, σ) Prospective Retrospective Prospective Retrospective

CG-SENSE (0.35,0.18) (0.42,0.23) (0.92,0.09) (0.95,0.09)
CS-L1Wavelet (0.4,0.21) (0.47,0.27) (0.93,0.08) (0.96,0.08)
DeepDecoder (0.49,0.22) (0.52,0.28) (0.93,0.04) (0.95,0.08)
SSDU (0.41,0.22) (0.47,0.27) (0.93,0.08) (0.96,0.08)

PercDis ³

(µ, σ) Prospective Retrospective Prospective Retrospective

CG-SENSE (1.05,0.08) (1.02,0.06) (0.45,0.16) (0.29,0.09)
CS-L1Wavelet (0.84,0.08) (0.79,0.05) (0.41,0.17) (0.25,0.09)
DeepDecoder (0.68,0.15) (0.64,0.09) (0.44,0.19) (0.3,0.11)
SSDU (0.63,0.13) (0.61,0.1) (0.42,0.16) (0.26,0.09)

Table 1: Mean and standard deviation of PSNR/SSIM/PercDis scores of the reconstruc-
tions with respect to the ground truth for the phantom and the fruit/vegetables;
arrows beside each metric denote whether higher or lower values are better.
PSNR/SSIM/PercDis were calculated over all the slices in the read-out direc-
tion with center cropping. We found statistically significant differences be-
tween each method for each metric other than (CS-L1Wavelet vs SDDU, Ret-
rospective SSIM, Phantom) and (CG-SENSE vs SSDU, Retrospective PSNR,
Fruits/Vegetables) Note that while with respect to PSNR/SSIM, DeepDecoder
performs the best in the phantom, and all methods perform similarly in
Fruits/Vegetables. In contrast, with respect to the PercDis score, SSDU performs
the best in both cases by larger relative margins than with PSNR/SSIM.
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4.2 Generalizability

Figures 4, 5 show axial MPRAGE brain slices at the different field strengths and corre-
sponding closeups of the cerebellum and the left frontal lobe. Figure 6 shows a sagittal
PD knee slice (3T) with closeups of articular cartilage interfaces in sagittal (femur) and
axial (patella) views. These show the generalizability of the methods to different magnetic
field strengths as well as changes in anatomy and contrast. Example reconstructions for the
other sequences can be found in the Appendix 8, 9.

4.2.1 Perceptual Evaluation

Qualitatively, we can see from Figures 4, 5, 6 that all methods are able to generalize well (in
the sense of approximately preserving performance/appearance on dataset used for train-
ing/tuning) to changing field strengths, anatomy, and contrast, although changing anatomy
clearly worsened absolute image quality as compared to changing field strength. DeepDe-
coder preserves its spatially varying smoothing/artifacts, and SSDU/CS-L1Wavelet are able
to produce images with less noise and comparable sharpness to CG-SENSE, although CS-
L1Wavelet exhibits more artifacts. As expected, the perceptual quality of all methods
increase with increasing field strength due to higher spatial resolution. Differences between
the methods are less pronounced in the knee scan although overall image quality is worse.

4.2.2 No-reference Image Quality Metrics

In the first row of Figure 7, we show a bar plot of the scores for the no-reference image quality
metrics averaged over all sequences and subjects. In general, CS-L1Wavelet and SSDU
have the highest (by a small margin) mean NRJPEG score (10.54/10.39) and lowest, mean
BRISQUE (29.35/28.06) and PIQE (25.56/22.87) scores, indicating better image quality in
comparison to CG-SENSE and DeepDecoder.

4.2.3 Human Ratings

In the second row of Figure 7, we show bar plots of the scores from the MR scientists and
the radiologist; we pooled the scores of the MR scientists. We see that MR scientists and
the radiologist generally agree for evaluating SNR, aliasing, and overall quality, rating CS-
L1Wavelet/SSDU as being better than or the same as CG-SENSE/DeepDecoder. We recall
that lower ratings correspond to better quality. MR scientists rated CS-L1Wavelet/SSDU
with a mean overall quality of (2.09/1.97) as compared to CG-SENSE/DeepDecoder with
(2.96/3.57). The radiologist rated CS-L1Wavelet/SSDU with a mean overall quality of
(2.73/2.23) as compared to CG-SENSE/DeepDecoder with (3.63/3.87). We note that for
both sets of raters, the difference between CS-L1Wavelet and SSDU in overall image quality
was found to not be statistically significant. Furthermore, when we restrict our analysis
to the average score change between the subgroup of changes in field strength vs. the
subgroup of PD Knee/T2 Knee scans, the overall image quality rating of CG-SENSE/CS-
L1Wavelet/DeepDecoder/SSDU all worsen in the knee scans for the MR scientists, with
increases of 0.26,0.40,0.11, and 0.79 respectively. In contrast, for the radiologist, this shift re-
sults in changes of -0.33,0.33,-0.16, and 0.83 respectively, indicating that only CS-L1Wavelet
and SSDU worsened.
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Figure 4: Axial slices from prospective reconstructions of MPRAGE scans of the brain at
different field strengths. Images are not co-registered; The interpolation of
image co-registration introduces blurring and thus was omitted. We chose slices at
similar locations for visualization. CG-SENSE produces noisy but sharp recon-
structions, and DeepDecoder produces smoother reconstructions with spatially
varying noise and oversmoothing. CS-L1Wavelet and SSDU produce similarly
smooth/sharp reconstructions.
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Figure 5: Closeups of the prospective reconstructions of MPRAGE scans of the brain at
different field strengths; we show closeups of the cerebellum in a sagittal view as
well as the left frontal lobe in an axial view. In the axial closeups, the spatially
varying smoothness of DeepDecoder is apparent (yellow arrows); furthermore,
wavelet artifacts of CS-L1Wavelet can be seen in, for example, the axial closeup
at 1.5T (red arrow). In general, we can see that all methods improve in sharpness
(as can be seen from the closeups of the corpus callosum) with increasing field
strength.
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Figure 6: Prospective reconstructions from PD SPACE scans of the knee, where we show
a sagittal slice as well as closeups on the articular cartilage interface in sagittal
(femur) and axial (patella) views. Qualitatively, the main differences are between
CS-L1Wavelet/SSDU and CG-SENSE/DeepDecoder, where the former group re-
moves noise better than the latter.
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Figure 7: Barplot of the no-reference image metrics averaged over all the subjects/different
sequences in the generalizability study (top row). The arrow next to each metric
indicates whether higher/lower scores are better. Barplots of the qualitative rat-
ing done by the MR scientists (pooled together) and the radiologist respectively
(bottom row). We found statistically significant differences between all methods
with respect to the no-reference image metrics. With respect to the MR scientists
the following differences were not statistically significant: (DeepDecoder,CS-
L1Wavelet,Sharpness),(DeepDecoder,SSDU,Sharpness), all of the aliasing com-
parisons, and (CS-L1Wavelet, SSDU, Overall Quality). All other comparisons
were found to be statistically significant. With respect to the radiologist, all
sharpness and aliasing comparisons were found to not be statistically signifi-
cant. In the SNR comparisons, only (CG-SENSE/DeepDecoder vs. SSDU) were
found to be statistically significant. In the overall quality comparisons, only
(CG-SENSE vs DeepDecoder) and (CS-L1Wavelet vs. SSDU) were found to not
be statistically significant. Overall, the no reference image metrics and human
rating agree that CS-L1Wavelet/SSDU exhibit better overall image quality than
DeepDecoder/CG-SENSE.

18



Validation and Generalizability of Self-Supervised Methods

5. Discussion

In contrast to the previous literature, this work critically examines the validation and gener-
alizability of self-supervised algorithms for undersampled MRI reconstruction through novel
experiments with a focus on prospective reconstructions, the clinically relevant scenario. To
this end, we analyze results from acquiring both fully-sampled and prospectively accelerated
data on two phantoms and prospectively accelerated, in-vivo data over a wide variety of
different sequences.

5.1 Validation using Prospectively Accelerated and Fully Sampled Data

Concerns about the differences between prospective and retrospective reconstructions were
also raised in (Muckley et al., 2021), in the context of end-to-end, supervised methods for
parallel MR image reconstruction. In particular, they noted that retrospective undersam-
pling neglects potential differences in signal relaxation across echo trains, and verification
should be performed before clinical use. From our results using both fully sampled and
prospectively accelerated data, it is clear that for the 3D MPRAGE sequence, prospective
vs. retrospective reconstructions can differ meaningfully, with retrospective reconstructions
having greater fidelity to the fully sampled reconstruction; prospective reconstructions ex-
hibit spatial distortions and local changes in contrast, with respect to the ground truth.
This is despite the methods being tuned/trained on prospectively accelerated data; hence,
this can be attributed to the differences in the prospectively vs. retrospectively sampled
k-space data, potentially due to the different gradient patterns used in the sequences. This
difference is relevant both for self-supervised and supervised machine learning methods;
indeed, end-to-end, supervised methods which are trained on retrospective data may yield
even greater distortion than self-supervised methods when prospective data is used for in-
ference. However, the performance ranking of the different methods was the same in both
prospective and retrospective reconstructions. Therefore, retrospective image quality can-
not necessarily be taken as a reliable proxy for prospective image quality; however, they
can be used to show differences between methods.

The quantitative results in the phantom show how ranking by PSNR and SSIM can be
misleading, as images that are perceptually/qualitatively more similar to the ground truth
(SSDU,CS-L1Wavelet) can have significantly worse or almost identical mean PSNR/SSIM
scores than images which are less qualitatively similar (CG-SENSE,DeepDecoder). In con-
trast, ranking with the PercDis score, which measures distances between the feature ac-
tivations within a pretrained classification network of the images rather than the images
themselves, better matches with the perceptual quality of the images, showing that SSDU
or SSDU/CS-L1Wavelet are better, by a significant margin (relatively with respect to the
same differences in PSNR/SSIM), than the other methods. The PercDis score or per-
ceptual loss (Johnson et al., 2016) was created precisely because they found this metric
better suited for measuring perceptual similarity than PSNR/SSIM. This apparent trade-
off between PSNR/SSIM and perceptual similarity is well-known in the computer vision
community, where it is called the perception-distortion tradeoff (Blau and Michaeli, 2018).
This concept has also recently been explored in MR; in (Adamson et al., 2021), the authors
train an in-painting network on the Fastmri dataset, and use the features of intermediate
layers for quantitative evaluation, producing a perceptual distance tailored for MR images.
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In (Wang et al., 2019), the authors propose a new reconstruction method which uses dis-
tances in feature space (trained from ground truth MR reconstructions) to better recover
textures/perceptual appearance than using just pixel-wise metrics.

5.2 Generalizability

We note that as our generalizability study is conducted on prospective reconstructions,
which we showed can exhibit distortions relative to fully-sampled reconstructions, it cannot
be considered as clinical validation; however, as all methods are affected the same way, this
study still can give a good idea of how well each method generalizes. While one might
conjecture that generalizability is less of a problem for self-supervised methods, if the pa-
rameters/hyperparameters of the methods are tuned for a specific sequence/anatomy as
in our case, this could potentially impact the robustness of the methods, as these param-
eters/hyperparameters are obtained from training/tuning on 3D, brain MPRAGE scans
acquired at 3T. This is despite the data consistency inherently embedded in CS-L1Wavelet,
DeepDecoder, and SSDU.

Generalizability and robustness of reconstruction methods have been studied in the
context of end-to-end, supervised methods for MR reconstruction in (Knoll et al., 2019;
Hammernik et al., 2021; Antun et al., 2020). We briefly summarize some relevant conclu-
sions from these articles. (Knoll et al., 2019) found that that different domain shifts reduced
performance more than others (e.g. changing SNR vs. image contrast), and that transfer
learning is a viable strategy for handling distribution shifts. (Hammernik et al., 2021) found
that data consistency is important for robustness, and that at acceleration factor 4, dis-
tribution shifts are less of an issue. (Antun et al., 2020) found that supervised methods
are vulnerable to adversarial perturbations, i.e. perturbations constructed such that min-
imal changes in the input data result in significant changes in the output. In (Darestani
et al., 2021), the authors examine the robustness of end-to-end methods, compressed sens-
ing, and variations of Deep Image Prior/DeepDecoder to distribution shifts, adversarial
perturbations, and recovery of small features. They found that for both supervised and
self-supervised methods, distribution shifts resulted in decreased PSNR/SSIM scores; in
addition, the decrease was roughly the same for each method, preserving the ranking of
the methods. Finally they found that all methods, including self-supervised methods, were
vulnerable to adversarial attacks, including CS-L1Wavelet and DeepDecoder. Furthermore,
Zhang et al. showed the vulnerability of SSDU to adversarial attacks, showing that this
was primarily due to the data consistency term. Thus, CG-SENSE can also be assumed
to be vulnerable. Therefore, all the methods used in this paper have been shown to be
vulnerable to adversarial attacks. We note that these works are based on retrospective
reconstructions/retrospective sampling from fully-sampled datasets for their validation.

In line with (Knoll et al., 2019), we found that different distribution shifts affected gener-
alization differently; changing anatomy/contrast worsened the overall image quality rating
in comparison to changing the field strength for all methods according to the MR scientists;
in contrast, the radiologist found that only SSDU/CS-L1Wavelet worsened. However, as the
mean scores in the knee scans for CG-SENSE/DeepDecoder were already 4 (the worst score),
the decrease may not reflect any substantial difference in quality. As in (Hammernik et al.,
2021), data consistency is crucial for the robustness of self-supervised methods as network
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parameters are trained solely through the modelling/the acquired undersampled data; in
particular, we do not see any hallucination that can occur with end-to-end networks without
data consistency. Furthermore, we see that as CG-SENSE produces a plausible image with
acceleration factor 5, this can explain why distribution shifts were not so troublesome, as
the self-supervised methods mainly needed to denoise, rather than recover anatomy/missing
high frequency details.

In contrast to (Darestani et al., 2021), our PSNR/SSIM results on the phantoms do
not preserve the ranking between methods, although the PercDis results do, approximately.
However, the qualitative metrics between distribution shifts over the different brain/knee
scans seem to preserve ranking according to the no-reference image metrics/human rat-
ings; this is consistent with PercDis being a better measure for perceptual image qual-
ity/similarity than PSNR/SSIM. In addition, the distribution shift in (Darestani et al.,
2021) was between two, similar datasets of knee MRI, as compared to our distribution
shifts, where we change anatomy, contrast, etc.

For a clinical scenario, it was of interest to see if self-supervised methods could poten-
tially work, without retraining, on other sequences, as retraining after deployment could
be impractical. Furthermore, while adversarial perturbations are valuable for studying the
input stability of reconstruction methods, they need to be manually constructed for each
method and added to the input data. As clinical MR reconstruction is a closed loop, this
kind of manual perturbation would require hacking the internal MR computer. There-
fore, transfer learning and adversarial perturbations were outside the scope of this work,
although from (Hammernik et al., 2021; Knoll et al., 2019; Darestani et al., 2021), we
would expect an increase in image quality from transfer learning and vulnerability to ad-
versarial perturbations for the methods considered in this paper. For example, (Darestani
and Heckel, 2021) found, in a retrospective study, that DeepDecoder had different optimal
(judged by PSNR/SSIM) hyperparameters for brain vs. knee scans. However, SSDU and
CS-L1Wavelet, tuned only on 3T MPRAGE brain data, are able to achieve an overall image
quality of fair to good on a diverse dataset.

5.3 Ranking Methods and Quantitative Metrics

From a perceptual viewpoint (PercDis score, no-reference image metrics, human rating),
SSDU and CS-L1Wavelet performed the best, with an edge to SSDU in the PercDis score/no-
reference image metrics. From a pixel-wise metric viewpoint (PSNR,SSIM), DeepDecoder
was better than or similar to all methods, as was also found in (Darestani et al., 2021).
CG-SENSE consistently performed the worst or similarly to all methods over all metrics.
With respect to validation, both approaches have their advantages and disadvantage; while
pixel-wise metrics are the natural way to compare against a ground-truth, they may not cor-
relate well with the perception of a radiologist. While perceptual metrics may be intuitive,
the absence of ground truth can make it less objective. To our knowledge, current state
of the art MR image reconstructions are generally not evaluated with perceptual metrics
such as PercDis or (Adamson et al., 2021), which require ground truth, or the no-reference
image quality metrics. However, given the close correspondence of the image quality met-
rics/PercDis to the human ratings/perceptual evaluation, as well as other evidence from
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the literature (Woodard and Carley-Spencer, 2006; Zhang et al., 2018), perceptual metrics
could be used as a complement to pixel-wise metrics/human ratings.

5.4 Implications for Future Methods and Validation

We note that while SSDU generally outperformed DeepDecoder, SSDU’s denoising network
was trained on a dataset of 3T MPRAGE, thus learning a prior over multiple subjects. In
contrast, DeepDecoder only learns/performs inference over a single slice at a time, thus
limiting the amount of information in comparison to SSDU. In Korkmaz et al. (2022),
the authors show that a Deep Image Prior based reconstruction can be fused explicitly
with prior information from a dataset of fully sampled acquistions to increase performance;
such fusion of prior information could potentially also benefit DeepDecoder and other self-
supervised methods which operate on a per slice basis. In addition, from the qualitative
results, CS-L1Wavelet with regularization parameter tuned using the Noise2Self framework
is competitive with SSDU. At lower acceleration factors, such as the one used in this paper,
it is plausible that this result generalizes, such that compressed sensing reconstructions with
optimally tuned regularization parameters can be competitive with state of the art machine
learning methods, at least on a qualitative basis. For future validation, we conclude that
appropriate regularization parameter tuning strategies should be used when comparing
compressed sensing reconstructions to new methods. Finally, we note that as the theory
behind the self-supervised methods we used (Deep Image Prior and blind denoising) form the
basis for or are conceptually similar to many other self-supervised methods, it is plausible
that the impressive robustness showed by these methods to a diverse range of realistic
distribution shifts would generalize to future self-supervised methods.

5.5 Future of Validation

However, whatever metrics or datasets are used for validating methods, the ultimate test
for reconstruction methods is the usefulness to radiologists for reliably diagnosing pathology
in comparison to currently used methods (Recht et al., 2020; Roux et al., 2019). This can
imply many things, including fine grained analysis of small textures/details/pathologies as
well as tissue specific analysis, requiring novel datasets with extensive annotations by radiol-
ogists. (Zhao et al., 2021; Desai et al., 2021) are two recent works in this direction, providing
datasets with bounding box annotations/pathology annotations to further validate recon-
structions. To assist validating future methods, the datasets acquired for this paper will be
made available online; see https://www.melba-journal.org/papers/2022:022.html for
details.

6. Conclusion

Rigorous validation is required to introduce new reconstruction algorithms into clinical rou-
tines. In this study, validation of prospective reconstructions, generalizability, and different
image quality metrics were investigated. The results show that self-supervised image re-
construction methods have potential, but that further development is required to not only
improve image quality but also to define a reliable, standardized way of validating new
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methods. Reliable validation can facilitate quicker translation to the clinical routine, with
the ultimate goal of improving patient care.
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Mehmet Akçakaya, Burhaneddin Yaman, Hyungjin Chung, and Jong Chul Ye. Unsu-
pervised deep learning methods for biological image reconstruction. arXiv preprint
arXiv:2105.08040, 2021.

Vegard Antun, Francesco Renna, Clarice Poon, Ben Adcock, and Anders C Hansen. On
instabilities of deep learning in image reconstruction and the potential costs of ai. Pro-
ceedings of the National Academy of Sciences, 117(48):30088–30095, 2020.

Joshua Batson and Loic Royer. Noise2self: Blind denoising by self-supervision. Proceedings
of the International Conference on Machine Learning, pages 524–533, 2019.

Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 6228–6237, 2018.

23



Yu et al.

Robert Bridson. Fast poisson disk sampling in arbitrary dimensions. SIGGRAPH sketches,
10(1):1, 2007.

Mohammad Zalbagi Darestani and Reinhard Heckel. Accelerated mri with un-trained neural
networks. IEEE Transactions on Computational Imaging, 7:724–733, 2021.

Mohammad Zalbagi Darestani, Akshay S. Chaudhari, and Reinhard Heckel. Measuring
robustness in deep learning based compressive sensing. International Conference on
Machine Learning, 139:2433–2444, 2021. URL http://proceedings.mlr.press/v139/

darestani21a.html.

Arjun D Desai, Andrew M Schmidt, Elka B Rubin, Christopher Michael Sandino, Mari-
anne Susan Black, Valentina Mazzoli, Kathryn J Stevens, Robert Boutin, Christopher
Re, Garry E Gold, et al. Skm-tea: A dataset for accelerated mri reconstruction with
dense image labels for quantitative clinical evaluation. Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

K. Epperson, A.M Sawyer, M. Lustig, M.T. Alley, M. Uecker, P. Virtue, P. Lai, and
Vasanawala SS. Creation of fully sampled mr data repository for compressed sensing
of the knee. Proceedings of Society for MR Radiographers and Technologists, 22nd An-
nual Meeting. Salt Lake City, Utah, USA., 2013.

Mark A Griswold, Peter M Jakob, Robin M Heidemann, Mathias Nittka, Vladimir Jellus,
Jianmin Wang, Berthold Kiefer, and Axel Haase. Generalized autocalibrating partially
parallel acquisitions (grappa). Magnetic Resonance in Medicine, 47(6):1202–1210, 2002.

Kerstin Hammernik and Florian Knoll. Chapter 2 - machine learning for image recon-
struction. In S. Kevin Zhou, Daniel Rueckert, and Gabor Fichtinger, editors, Hand-
book of Medical Image Computing and Computer Assisted Intervention, The Elsevier
and MICCAI Society Book Series, pages 25–64. Academic Press, 2020. ISBN 978-0-
12-816176-0. doi: https://doi.org/10.1016/B978-0-12-816176-0.00007-7. URL https:

//www.sciencedirect.com/science/article/pii/B9780128161760000077.

Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht, Daniel K Sodickson,
Thomas Pock, and Florian Knoll. Learning a variational network for reconstruction of
accelerated mri data. Magnetic Resonance in Medicine, 79(6):3055–3071, 2018.

Kerstin Hammernik, Jo Schlemper, Chen Qin, Jinming Duan, Ronald M. Summers, and
Daniel Rueckert. Systematic evaluation of iterative deep neural networks for fast parallel
mri reconstruction with sensitivity-weighted coil combination. Magnetic Resonance in
Medicine, 86(4):1859–1872, 2021. doi: https://doi.org/10.1002/mrm.28827. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28827.

Reinhard Heckel and Paul Hand. Deep decoder: Concise image representations
from untrained non-convolutional networks. Proceedings of the International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=

rylV-2C9KQ.

24

http://proceedings.mlr.press/v139/darestani21a.html
http://proceedings.mlr.press/v139/darestani21a.html
https://www.sciencedirect.com/science/article/pii/B9780128161760000077
https://www.sciencedirect.com/science/article/pii/B9780128161760000077
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28827
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.28827
https://openreview.net/forum?id=rylV-2C9KQ
https://openreview.net/forum?id=rylV-2C9KQ


Validation and Generalizability of Self-Supervised Methods

Reinhard Heckel and Mahdi Soltanolkotabi. Compressive sensing with un-trained neural
networks: Gradient descent finds a smooth approximation. Proceedings of the Interna-
tional Conference on Machine Learning, pages 4149–4158, 2020.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style trans-
fer and super-resolution. Proceedings of the European conference on computer vision,
pages 694–711, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Florian Knoll, Kerstin Hammernik, Erich Kobler, Thomas Pock, Michael P Recht, and
Daniel K Sodickson. Assessment of the generalization of learned image reconstruction
and the potential for transfer learning. Magnetic Resonance in Medicine, 81(1):116–128,
2019.

Florian Knoll, Kerstin Hammernik, Chi Zhang, Steen Moeller, Thomas Pock, Daniel K Sod-
ickson, and Mehmet Akcakaya. Deep-learning methods for parallel magnetic resonance
imaging reconstruction: A survey of the current approaches, trends, and issues. IEEE
Signal Processing Magazine, 37(1):128–140, 2020a.

Florian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J Muckley, Mary Bruno, Aaron
Defazio, Marc Parente, Krzysztof J Geras, Joe Katsnelson, Hersh Chandarana, et al.
fastmri: A publicly available raw k-space and dicom dataset of knee images for accelerated
mr image reconstruction using machine learning. Radiology: Artificial Intelligence, 2(1):
e190007, 2020b.

Yilmaz Korkmaz, Salman UH Dar, Mahmut Yurt, Muzaffer Özbey, and Tolga Cukur. Unsu-
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Appendix

Hyperparameter Tuning

For example, to set the regularization parameter of CS-L1Wavelet, we treat it as a function
with a single parameter (λ). We can then optimize this parameter using the Noise2Self
training framework to estimate the λ which minimizes the noise-free error between simu-
lated measurements and the acquired measurements. Concretely, we fix 20 logarithmically
spaced values from 0.00001 to 0.1. We set each value as λ and run 50 image reconstruc-
tions corresponding to different, random masks and average the corresponding errors with
respect to the complementary mask in order to approximate the true measurement error
associated with using each value. We then select the value with the lowest measurement
error as the optimal regularization parameter. This is done for each slice in each subject;
the final regularization value which is used throughout this paper is the average over all
subjects. The hyperparameters of DeepDecoder and SSDU are set similarly with a grid
search over the network hyperparameters, albeit over a much smaller set of data due to the
high computational demand.
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
Sequence Type MPRAGE MPRAGE MPRAGE MPRAGE MPRAGE MPRAGE SPACE SPACE SPACE SPACE
Field Strength (T) 1.5 3 7 3 3 3 3 3 3 3
Body Part Brain Brain Brain Brain Brain Brain Brain Brain Knee Knee
Coils 1Tx/20Rx 1Tx/64Rx 8pTx/32Rx 1Tx/20Rx 1Tx/64Rx 1Tx/64Rx 1Tx/64Rx 1Tx/64Rx 1Tx/18Rx 1Tx/18Rx
Resolution (mm3) 1.3x1.3x1.2 1x1x1 0.7x0.7x0.7 1x1x1 1x1x1 1x1x1 1x1x1 1x1x1 0.3x0.3x0.6 0.3x0.3x0.6
Field of View (mm3) 240x240x160 256x240x208 250x219x179 256x240x208 256x240x208 256x240x208 250x250x176 250x250x176 160x160x134 160x160x115
Inversion Time (s) 1 0.9 1.1 0.9 0.9 0.972 - 2.05 - -
Repetition Time (s) 2.4 2.3 2.5 2.3 2.3 1.93 0.7 7 0.9 1
Echo Time (ms) 3.47 2.9 2.87 2.9 2.9 2.61 11 392 29 108
Echo Spacing (ms) 7.86 6.88 7.8 6.88 6.88 6.28 3.72 3.66 4.84 5.12
Bandwidth (Hz/Px) 180 240 250 240 240 280 630 651 488 416
Turbo Factor 192 198 250 198 198 198 42 220 35 44
Acceleration Factor 4.2 5 5 5 5 5 4 6 7 7
Acquisition Time 1:28 min 1:34 min 2:42 min 1:34 min 1:34 min 1:20 min 3:27 min 3:46 min 4:41 min 3:52 min

Table 2: Detailed sequence parameters of all used datasets. We note that spiral phyllotaxis sampling Mussard et al. (2020) and
Poisson disk sampling Bridson (2007) were used for the MPRAGE and SPACE sequences respectively.
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Figure 8: Here we show axial brain slice reconstructions from three different perturbations
of the MPRAGE sequence: the addition of motion, using 20 coils instead 64
coils, and changing the parameters of the MPRAGE sequence. The images are
not registered due to interpolation effects from co-registration.
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Figure 9: Here we show axial brain slices and a sagittal knee slice from the reconstructions
from the SPACE acquisitions. The images are not registered due to interpolation
effects from co-registration.
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