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Abstract

Deep learning (DL) models have provided state-of-the-art performance in various medical
imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) chal-
lenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor
and lesion sub-regions) is particularly challenging, and potential errors hinder translating
DL models into clinical workflows. Quantifying the reliability of DL model predictions
in the form of uncertainties could enable clinical review of the most uncertain regions,
thereby building trust and paving the way toward clinical translation. Several uncertainty
estimation methods have recently been introduced for DL medical image segmentation
tasks. Developing scores to evaluate and compare the performance of uncertainty measures
will assist the end-user in making more informed decisions. In this study, we explore and
evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty
quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain
tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that
produce high confidence in correct assertions and those that assign low confidence levels
at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher per-
centage of under-confident correct assertions. We further benchmark the segmentation
uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of
which also participated in the main BraTS segmentation task. Overall, our findings confirm
the importance and complementary value that uncertainty estimates provide to segmen-
tation algorithms, highlighting the need for uncertainty quantification in medical image
analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made
publicly available at https://github.com/RagMeh11/QU-BraTS.

Keywords: Uncertainty Quantification, Trustworthiness, Segmentation, Brain Tumors,
Deep Learning, Neuro-Oncology, Glioma, Glioblastoma

1. Introduction

Machine learning groups often struggle to gain access to large-scale annotated medical imag-
ing datasets for training and testing their algorithms. As a result, many researchers rely on
smaller proprietary datasets, making it challenging to show the full potential of their algo-
rithms and even more challenging to compare their results against other published methods.
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Therefore, medical image analysis challenges (Menze et al., 2015; Bakas et al., 2018; Simp-
son et al., 2019; Antonelli et al., 2021; Kurc et al., 2020; Orlando et al., 2020; Codella
et al., 2019; Bernard et al., 2018; Sun et al., 2021; Heller et al., 2021; Pati et al., 2021;
Müller and Clough, 2005; del Toro et al., 2014; Heimann et al., 2009) play a pivotal role in
developing machine learning algorithms for medical image analysis by making large-scale,
carefully labeled, multi-center, real-world datasets publicly available for training, testing,
and comparing machine learning algorithms. In particular, the Brain Tumor Segmentation
(BraTS) challenge has provided the community with a benchmarking platform to compare
segmentation methods for over ten years, increasing the dataset size each year (Menze et al.,
2015; Bakas et al., 2017c, 2018; Baid et al., 2021). The availability of the dataset, and the
challenge itself, have permitted the development of many new successful deep learning based
approaches such as the DeepMedic (Kamnitsas et al., 2016, 2017) and the nnU-Net (Isensee
et al., 2018, 2021).

Despite their success in many medical image analysis challenges, the resulting deep learn-
ing algorithms are typically not translated into the clinical setting for various reasons. One
problem is that most deep learning models produce deterministic outputs. That is, they do
not communicate the uncertainties associated with their predictions. This is problematic
in the challenging context of segmenting pathological structures (e.g., tumors, lesions), as
even the top-performing methods produce errors. Providing uncertainties associated with
the machine learning predictions could permit the end-user (e.g., clinician) to review and
correct the model predictions where the model is not certain about its predictions.

Bayesian Deep Learning provides a popular framework to allow deep learning models
to generate predictions and their associated uncertainties (Neal, 2012; Abdar et al., 2021).
Recent advances (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017; Blei et al.,
2017; Blundell et al., 2015) in Bayesian Deep Learning have led to widespread adaptations
of the frameworks for different tasks in medical image analysis (Karimi et al., 2019; Bian
et al., 2020; Dalca et al., 2018). There are recent attempts to evaluate uncertainties asso-
ciated with model predictions in medical image analysis (Nair et al., 2020; Araújo et al.,
2020; Ghesu et al., 2019; Tardy et al., 2019; Filos et al., 2019; Menze et al., 2020), which
quantifies whether these uncertainties can adequately capture model confidence in these
domains. To the best of our knowledge, there has not yet been a single unified approach to
evaluate the model uncertainties in the context of medical image segmentation.

The main focus of this work is three-fold: i) to develop an uncertainty evaluation score
with a down-stream clinical goal in mind; ii) to benchmark the various participating teams
from a recent BraTS challenge (Bakas et al., 2018), using the developed evaluation score;
and iii) to make the associated evaluation code publicly available for future benchmarking of
Bayesian Deep Learning methods for medical image segmentation. In particular, we focus
on developing an uncertainty evaluation criterion for brain tumor segmentation. We aim
to develop a Computer-Aided Diagnosis (CAD) system where the pathology size is smaller
than the surrounding healthy tissue. In this context, the objectives are that the uncertainty
estimates associated with an automatic segmentation system reflect that the system is (a)
confident when correct and (b) uncertain when incorrect. These criteria would mainly per-
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mit uncertain predictions to be flagged and brought to the attention of the clinical expert,
rather than overburdening the expert by having to review the entirety of the prediction.
To this end, we present the resulting uncertainty evaluation score (Mehta et al., 2020) and
the rankings and results for 14 teams participating in the Quantification of Uncertainty
for Brain Tumor Segmentation (QU-BraTS) 2020 challenge. The various analyses of the
methods and results produced by the different teams highlight the necessity of the different
components of our developed score. The results indicate that the segmentation results and
the associated uncertainties give complementary information as teams performing well on
one task do not necessarily perform well on the other. Qualitative results show that the
developed score measures the desired real-world properties for tumor segmentation uncer-
tainties.

2. Related Work

Recent works (Kendall and Gal, 2017; Der Kiureghian and Ditlevsen, 2009) show that un-
certainties associated with the outputs of a machine learning model are primarily divided
into two sub-types: (i) Epistemic uncertainty, which captures the uncertainty associated
with the model parameters, and (ii) Aleatoric uncertainty, which captures the uncertainty
inherent in the data. The epistemic uncertainty captures our ignorance about which model
generated our collected data. This uncertainty can be reduced to zero if the model is
provided with an infinite amount of data, permitting the model parameters to learn the
true distribution of the data generation model. The aleatoric uncertainty could result from
measurement noise, for example, and therefore cannot be reduced even with more data
collection. Both epistemic and aleatoric uncertainties play essential roles in medical image
analysis. Epistemic uncertainty indicates where to trust the model output (Nair et al.,
2020; Araújo et al., 2020), and aleatoric uncertainty reflects the prevalent noise in the data
(Shaw et al., 2021).

Several recent papers (Ghesu et al., 2019; Nair et al., 2020; Tardy et al., 2019; Kendall
et al., 2015) show cases where uncertainty estimates correlate with errors in a machine
learning model. These results show promise that estimating uncertainties make a better
adaptation of deep learning models in real-world scenarios possible. However, in the med-
ical image analysis field, to date, there is an unmet need to (1) systemically quantify and
compare how well different uncertainty estimates properly communicate the degree of con-
fidence in the output and (2) to rank the performance of competing estimates, given the
objectives of the task and the requirements during a clinical review.

The most popular metrics for measuring model confidence output are the expected cali-
bration error (ECE) and the maximum calibration error (MCE) (Wen et al., 2020; Ashukha
et al., 2020). These metrics are useful for quantitatively measuring model calibration.
However, these metrics are based on the softmax probabilities. Furthermore, a simple post-
processing technique like temperature scaling (Guo et al., 2017) can make a deterministic
and a probabilistic model equally calibrated. ECE and MCE metrics cannot differentiate
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between these temperature-calibrated models.

In another paper, Lakshminarayanan et al. (2017) evaluate the usefulness of the predic-
tive uncertainty for decision making by evaluating the model output only in cases where the
model’s confidence is above a user-specified threshold. Their main idea is that if the confi-
dence estimates are well-calibrated on the data distribution seen during training, one can
trust the model predictions when the reported confidence is high and result to a different
solution when the model is not confident. They showed that when the model is evaluated
on its most confident prediction, the model accuracy is high compared to when the model is
evaluated on all outputs. Though this is encouraging and allows for the comparison of dif-
ferent uncertainty generation methods, it does not consider how many model outputs were
discarded at a certain threshold. Using this criterion, a model which has low accuracy but
high uncertainty when evaluated on all predictions is rewarded. This model is undesirable
in a practical scenario, and leading to the rejection of most of its predictions to achieve high
accuracy.

Mukhoti and Gal (2018) designed a metric to quantify uncertainty for the task of se-
mantic segmentation. They made the following assumption during the metric design: if
a model is confident about its prediction, it should be accurate, which implies that if a
model is inaccurate on output, it should be uncertain. With this in mind, they calculate
the following two probabilities at different uncertainty thresholds: (i) p(accurate|certain):
the probability that the model is accurate on its output given that it is confident; (ii)
p(uncertain|inaccurate): the probability that the model is uncertain about its output given
that it has made a mistake in its prediction (i.e., is inaccurate). They used the metric to
compare different BDL methods for the semantic segmentation task. Though this metric is
useful for semantic segmentation, where each pixel in an image is labelled as one class, it
is not useful for the task of pathology segmentation where there is a high class-imbalance
problem and the number of pixels (voxels) of interest (pathology) is low compared to the
background-healthy class. For example, in the brain tumour segmentation task, 99.9% of
the voxels belong to the background (healthy tissue) while only 0.1% belongs to the fore-
ground (pathology). Due to a high class imbalance, p(accurate|certain) would be dominated
by healthy (background) voxels, most of which can be accurately classified with high cer-
tainty.

Hall et al. (2020) developed a metric, Probability-based Detection Quality (PDQ), to
evaluate the uncertainty estimate for the object detection task. The authors combine the
class labelling measure (i.e., label quality) and the bounding box detection measure (i.e.,
spatial quality) into the metric. Here, spatial quality measures how well the detection
describes where the object is within the image. Label quality measures how effectively a
detection identifies the object class. These are averaged over all possible combinations of
bounding boxes and labels generated using multiple samples. The authors also organized
a challenge associated with this task at the Annual Conference on Computer Vision and
Pattern Recognition (CVPR) 2019. The paper and its associated challenge (Sünderhauf
et al., 2019) illustrate the importance of developing uncertainty quantification metrics that

5

https://nikosuenderhauf.github.io/roboticvisionchallenges/object-detection.html


Mehta et al.

are tailored to the task of interest.

Jungo et al. (2020) made the first step towards quantifying uncertainty for the brain
tumor segmentation task. They compared various uncertainty generation methods such as
MC-Dropout, Deep Ensemble (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017),
and others, using the standard metrics like ECE, MCE, and reliability diagrams. In ad-
dition, they proposed a new metric, Uncertainty-Error (U-E) overlap. The results showed
that Deep Ensemble could produce more reliable uncertainty measures than other methods.

3. Uncertainty Evaluation Score

This work focuses on the publicly available BraTS challenge dataset (Menze et al., 2015;
Bakas et al., 2018, 2017c), which consists of both High-Grade Glioma (HGG) and Low-Grade
Glioma (LGG) cases, as described in the previous BraTS manuscripts and on The Cancer
Imaging Archive (TCIA) (Clark et al., 2013). However, this naming convention is now
obsolete. Following the 2021 World Health Organization (WHO) classification of tumors
of the central nervous system (CNS) (Louis et al., 2021), the data provided by the BraTS
challenge should be described as including: 1) adult-type diffuse gliomas, 2) pediatric-type
diffuse low-grade gliomas, and 3) pediatric-type high-grade gliomas. The adult-type diffuse
gliomas in the BraTS dataset comprise Glioblastoma (IDH-wildtype, CNS WHO grade 4)
and Astrocytoma (IDH-mutant, CNS WHO grades 2-4). Ground truth labels generated and
signed off by clinical experts are provided for each patient case and consist of 3 tumor sub-
regions: enhancing tumor core, necrotic core, and peritumoral edematous/infiltrated tissue
(here onward referred to as edema) (Bakas et al., 2018). However, focusing on the clinical
relevance, the submitted algorithms are not evaluated on each of these tumor sub-regions
but on higher-level tumor entities that relate directly to the surgical and radiotherapy im-
portance. Specifically, the tumor entities considered during the evaluation and ranking of
algorithms are: (i) the enhancing tumor core (ET), (ii) the tumor core (TC), which consists
of the union of ET and the necrotic core, and (iii) the whole tumor (WT), which consists
of all three sub-regions namely edema, necrotic core, and enhancing tumor core, and ra-
diographically is defined by the abnormal FLAIR signal envelope. The performance of the
automatic segmentation methods is finally evaluated using the Dice Similarity coefficient
(referred to as DSC from here onward) and the 95th percentile of the Hausdorff distance
between the predicted labels and the provided ground truth.

The objective of the uncertainty quantification task was to evaluate and rank the un-
certainty estimates for the task of brain tumor segmentation. To this end, each team pro-
vided their output labels for the multi-class segmentation task and the estimated voxel-wise
uncertainties for each of the associated tumor entities, namely, WT, TC, and ET. These
uncertainties were required to be normalized in the range of 0−100 for ease of computation.
For each tumor entity, the uncertain voxels were filtered at N predetermined uncertainty
threshold values τ1,..,N , and the model performance was assessed based on the metric of in-
terest (i.e., theDSC in this case) of the remaining voxels at each of these thresholds (τ1,..,N ).
For example, τ = 75 implies that all voxels with uncertainty values ≥ 75 are marked as
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Table 1: Change in DSC, Filtered True Positives (FTP) ratio, and Filtered True Negatives
(FTN) ratio with change in uncertainty thresholds for two different example slices
shown in Figure 1.

DSC

DSC at 100 (baseline) DSC at 75 DSC at 50 DSC at 25

Example-1 0.94 0.96 0.965 0.97

Example-2 0.92 0.955 0.97 0.975

Ratio of Filtered TPs (1 - (TPx / TPbaseline (τ=100)))

FTP at 100 FTP at 75 FTP at 50 FTP at 25

Example-1 0.00 0.00 0.05 0.1

Example-2 0.00 0.00 0.15 0.25

Ratio of Filtered TNs (1 - (TNx / TNbaseline (τ=100)))

FTN at 100 FTN at 75 FTN at 50 FTN at 25

Example-1 0.00 0.0015 0.0016 0.0019

Example-2 0.00 0.0015 0.0026 0.0096

uncertain, and the associated predictions are filtered out and not considered for the subse-
quent DSC calculations. In other words, the DSC values are calculated for the remaining
predictions of the unfiltered voxels. This evaluation rewards models where the confidence
in the incorrect assertions (i.e., False Positives, denoted FPs, and False Negatives, denoted
FNs) is low and high for correct assertions (i.e., True Positives, denoted TPs, and True
Negatives, denoted TNs). For these models, it is expected that as more uncertain voxels
are filtered out, theDSC score, calculated only on the remaining unfiltered voxels, increases.

Although the criterion mentioned above helps measure performance in terms of DSC,
the metric of interest, it does not keep track of the total number of filtered voxels at each
threshold. In real practice, an additional penalty should be provided to a system that filters
out many voxels at a low threshold to achieve high performance on the metric of interest,
as it will increase the reviewing burden on clinical raters. One solution is to add a penalty
based on the total number of filtered voxels at each uncertainty threshold. This strategy is
also not ideal as it will also penalize methods that filter out FPs/FNs, areas where mistakes
are made. Instead, the evaluation method chosen penalizes methods that filter out only the
correctly predicted voxels (i.e., TP and TN). Given that the specific tumor segmentation
task has a high-class imbalance between pathological and healthy tissue, different penalties
are assigned to TPs and TNs. The ratio of filtered TPs (FTP) is estimated at different
thresholds (τ1,..,N ) and is measured relative to the unfiltered values (τ = 100) such that FTP
= (TP100 - TPτ ) / TP100. The ratio of filtered TNs is calculated similarly. This evaluation
essentially penalizes approaches that filter out a large percentage of TP or TN relative to
τ = 100 voxels (i.e., more uncertain about correct assertions) to attain the reported DSC

value, thereby rewarding approaches with a lower percentage of uncertain TPs/TNs.
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Figure 1: Effect of uncertainty thresholding on two different example patient MRI slices
(Row-1 and Row-2) for whole tumor (WT) segmentation. (a) T2-FLAIR MRI.
(b) WT Ground Truth (c) Overall Model Prediction (d) Results with No filtering,
Uncertainty Threshold = 100. (e) Uncertainty Threshold = 75 (f) Uncertainty
Threshold = 50 (g) Uncertainty Threshold = 25. It is desired that with decrease
in the uncertainty threshold, more False Positives (blue) and False Negative (red)
voxels are filtered out (marked as uncertain - yellow) while True Positive (green)
and True Negative voxels remain unfiltered.

Figure 1 and Table 1 depict qualitative examples and their associated quantitative re-
sults. Here, decreasing the threshold (τ) leads to filtering out voxels with incorrect as-
sertions. This filtering, in turn, leads to an increase in the DSC value for the remaining
voxels. Example 2 indicates a marginally better DSC value than the slice in example 1 at
uncertainty thresholds (τ) 50 and 25. However, the Ratio of FTPs and FTNs indicates that
this is at the expense of marking more TPs and TNs as uncertain.

To ensure that the generated output segmentations are directly associated with the
BraTS challenge protocol, the generated uncertainties are expected to be produced for
these ”binary” tumor entities, i.e., ET, TC, and WT. The associated uncertainties are eval-
uated using the scores defined above for each tumor entity.

Finally, the resulting uncertainty measures for each team are ranked according to a
unified score which combines the area under three curves: 1) DSC vs τ , 2) FTP vs τ , and
3) FTN vs τ , for different values of τ . The unified score is calculated as follows:

scoretumor entity =
AUC1 + (1−AUC2) + (1−AUC3)

3
. (1)

In the context of the BraTS uncertainty evaluation task (QU-BraTS), the score is esti-
mated for each tumor entity separately and then used to rank the participating methods.
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Figure 2: Effect of changing uncertainty threshold (τ) on WT for entropy measure. Specif-
ically, we plot (left) DSC, (middle) Filtered True Positive Ratio, and (right)
Filtered True Negative Ratio as a function of 100 - τ . We plot the curves for six
different uncertainty generation methods, namely, MC-Dropout, Deep Ensem-
ble, Dropout Ensemble, Bootstrap, Dropout Bootstrap, and Deterministic. All
methods use entropy as a measure of uncertainty.

3.1 A 3D U-Net Based Experiment

Experiments were devised to show the functioning of the derived uncertainty evaluations
and rankings. A modified 3D U-Net architecture (Çiçek et al., 2016; Mehta and Arbel,
2018) generates the segmentation outputs and corresponding uncertainties. The network
was trained (n = 228), validated (n = 57), and tested (n = 50) based on the publicly
available BraTS 2019 training dataset (n = 335) (Menze et al., 2015; Bakas et al., 2018,
2017c,a,b). The performances of WT segmentation with the entropy uncertainty measure
(Gal et al., 2017), which captures the average amount of information contained in the
predictive distribution, are shown in Figure 2. Here uncertainties are estimated using MC-
Dropout (Gal and Ghahramani, 2016), Deep Ensemble (Lakshminarayanan et al., 2017),
Dropout Ensemble (Smith and Gal, 2018), Bootstrap, Dropout Bootstrap, and a Deter-
ministic softmax entropy measure. Dropout bootstrap shows the best DSC performance
(highest AUC) and has the worst performance for FTP and FTN curves (highest AUC).
This result shows that the higher performance in DSC is at the expense of a higher number
of filtered correct voxels. Overall, the score is working in line with the objectives. However,
there is no clear winner amongst these uncertainty methods in terms of rankings.

4. BraTS 2020 Quantification of Uncertainty (QUBraTS) challenge –
Materials and Methods

4.1 Dataset

The BraTS 2020 challenge dataset (Menze et al., 2015; Bakas et al., 2018, 2017c,a,b) is
divided into three cohorts: Training, Validation, and Testing. The Training dataset is com-
posed of multi-parametric MRI (mpMRI) scans from 369 diffuse glioma patients. Each
mpMRI set contains four different sequences: native T1-weighted (T1), post-contrast T1-
weighted (T1ce), T2-weighted (T2), and T2 Fluid-Attenuated-Inversion-Recovery (FLAIR).
Each MRI volume is skull-stripped (also known as brain extraction) (Thakur et al., 2020),
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co-aligned to a standard anatomical atlas (i.e., SRI24 (Rohlfing et al., 2010)), and resampled
to 1mm3 voxel resolution. Expert human annotators provided GT tumor labels, consist-
ing of 3 classes described previously. Note that there is no ”ground-truth” uncertainty label.

The BraTS 2020 Validation cohort is composed of 125 cases of patients with diffuse
gliomas. Similar to the training dataset, this also contains four different mpMRI sequences
for each case. The validation dataset allows participants to obtain preliminary results in
unseen data and their cross-validated results on the training data. The GT labels for the
validation data are not provided to the participants.

The BraTS 2020 Testing cohort is then used for the final ranking of the participating
team. It is comprised of a total of 166 cases. The exact type of glioma is not revealed to
the participating teams. Each team gets a window of 48 hours to upload their results to the
challenge evaluation platform (https://ipp.cbica.upenn.edu/) (Davatzikos et al., 2018).

4.2 Evaluation framework

The University of Pennsylvania Image Processing Portal (https://ipp.cbica.upenn.edu/)
is used to evaluate all BraTS participating algorithms quantitatively. This portal allows the
registration of new teams to access the BraTS datasets and the framework for automatically
evaluating all participating algorithms on all three (i.e., training, validation, and testing)
cohorts1. In addition to the IPP, and in favor of reproducibility and transparency, we
implement the quantitative evaluation of uncertainty publicly available through GitHub2.
As mentioned previously, the evaluation framework expects the challenge participants to
provide multi-class brain tumor segmentation labels and their associated voxel-wise un-
certainties for three tumor entities: whole tumor (WT), tumor core (TC), and enhancing
tumor (ET). These uncertainties are expected to be normalized between 0-100 for ease of
computation.

4.3 Participating Methods

In total, 14 teams participated in the QU-BraTS 2020 challenge. All teams utilized a Con-
volutional Neural Network (CNN) based approach for the tumor segmentation task and
the generation of associated uncertainty maps. Detailed descriptions of 12/14 proposed
approaches are given below3. Details regarding the CNN segmentation architectures uti-
lized by each team are not described in detail here, as this paper focuses on uncertainty
generation methods rather than the segmentation itself. Readers are requested to refer to
each team’s individual papers (as cited below) for more details about the CNN architec-
ture used for the segmentation task. A preliminary version of the QU-BraTS challenge was
run in conjunction with the BraTS 2019 challenge. Appendix B provides details about the
participating teams and their performance. We did not include the analysis results of the

1. Access to the BraTS testing datasets is not possible after the conclusion of the challenge.
2. https://github.com/RagMeh11/QU-BraTS
3. Two teams, namely Frankenstein (Duncan et al., 2021) and NSU-btr (Groza et al., 2021), withdrew from

participating in this paper.
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QU-BraTS 2019 challenge. The task was run as a preliminary task without employing any
statistical significance analysis ranking scheme to evaluate the participating teams.

4.3.1 Method-1: Team SCAN (McKinley et al., 2021)

The method uses the DeepSCAN (McKinley et al., 2019) model. The training of the model
was performed using a combination of focal loss (Lin et al., 2020) and a Kullback-Leibler
divergence: for each voxel and each tumor entity, the model produces an output p ∈ (0, 1)
(corresponding to the output of a standard binary classification network) and an output
q ∈ (0, 0.5) which represents the probability that the classifier output differs from the
ground truth on that tumor entity. The probability q is supervised by the label z, which
is the indicator function for disagreement between the classifier (thresholded at the p = 0.5
level) and the ground truth. Given q, an annealed version of the ground truth is formed,
w = (1− x) · q + x · (1− q). Focal KL divergence between w and p is defined as follows:

FocalKL(w||p) = (p− w)2(w · log(w)− w · log(p)).

The final loss function is given by:

Loss = 0.1 · Focal(p, x) + 0.9 · FocalKL(w||p) + 0.9 · BCE(q, z).

An ensemble of the networks was utilized in the final output, where from different predic-
tions, p and q were combined to a single probability q · Ip≤0.5 + (1 − q)Ip≥0.5. The final
uncertainty output (denoted q above) was normalized into the range of 0 to 100: 100∗(1−2q).
The uncertainty in the ensemble can likewise be extracted as for any ordinary model with
a sigmoid output x as: 100 · (1− 2|0.5− x|)

While this uncertainty measure gives a measure of uncertainty both inside and outside
the provided segmentation, it was empirically observed that treating all positive predictions
as certain and only assigning uncertain values to only negative predictions gives better
performance on the challenge scores.

4.3.2 Method-2: Team Alpaca (Murugesan et al., 2021)

An ensemble of three different 2D segmentation networks (Huang et al., 2017; Chen et al.,
2019; Hu et al., 2020) was used. The softmax probabilities from each of the three networks
were averaged to generate the final probability maps. These probability maps were used to
generate the uncertainty maps for each tumor entity. This was computed by mapping the
most confident prediction value to 0 and the least confident value to 100.

4.3.3 Method-3: Team Uniandes (Daza et al., 2021)

A novel deep learning architecture named Cerberus was proposed. The uncertainty maps
were produced by taking the compliment of the final segmentation softmax probability
maps, and rescaling them between 0 and 100.

4.3.4 Method-4: Team DSI Med (Dai et al., 2021)

Five attention-gated U-Net models were trained. The uncertainty maps were normalised
between 0 and 100 for the four nested tumor entities. For each uncertainty map, the maxi-
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mum softmax probability from the five models for each voxel in each entity was taken. The
voxels were either part of the given nested entity or not, judging by the segmentation maps
acquired from the ensemble of five models. The probabilities of those voxels that belong to
the nested entity were inverted and multiplied by 100. The results were then rounded to
get into the 0-100 range.

Double thresholds were further applied to refine the uncertainty maps. Low and high
probability thresholds for each nested entity were empirically defined: WT(0.1, 0.3), TC(0.2,
0.3) ET(0.3, 0.5). For each voxel that belongs to a nested entity, the uncertainty was set to
0 when the probability was higher than the corresponding high threshold. For each voxel
that belongs to the background, the uncertainty was set to 0 when the maximum probability
was lower than the low threshold. Such a method enabled the adjustment of the uncertainty
of nested entities and the background independently.

4.3.5 Method-5: Team Radiomics MIU (Banerjee et al., 2019a)

The method used an ensemble of three different CNNs (Wang et al., 2018; Banerjee et al.,
2019b; Doshi et al., 2019) for segmentation. Different models were trained for three different
tumor entities (i.e., WT, TC, and ET segmentation). Three model ensembles were used,
i.e., a total of nine models were trained for the task. Averaging various probabilities is one of
the best and most effective ways to get a prediction of the ensemble model in classification.
The uncertainty was estimated using the concept of entropy to represent voxel-wise variance
and diversity information. The resulting uncertainty values were scaled to lie between 0
and 100.

4.3.6 Method-6: Team Med vision (Pei et al., 2021)

The method proposed self-ensemble-resUNet. The output softmax probabilities (ypred) were
inverted and normalized between 0-100 to obtain the uncertainty maps (Upred): Upred =
100 · (1− ypred)

4.3.7 Method-7: Team Jaguars (Rosas-González et al., 2021)

The method used an ensemble of a total of 7 U-Net type models. The output probabilities
of each model were averaged for each label in each voxel to obtain a new probability for
the ensemble. Since the model makes a binary classification of each voxel, the highest
uncertainty corresponds with a probability of 0.5. Then the normalized entropy was used
to get an uncertainty measure of the prediction for each voxel:

H =
∑

c∈C

pc · log(pc)

log(|C|)
∈ [0, 1],

where pc is the sigmoid output average probability of class c and C is the set of classes, (C
= {0,1} in this case). These values were multiplied by 100 to normalize it between 0 and
100.
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4.3.8 Method-8: Team UmU (Vu et al., 2021)

The method proposes a Multi-Decoder Cascaded Network to predict the probability of the
three tumor entities. An uncertainty score, uri,j,k, at voxel (i, j, k) was defined by:

uri,j,k =

{

200 · (1− pri,j,k), if pri,j,k ≥ 0.5

200 · pri,j,k, if pri,j,k < 0.5

where uri,j,k ∈ [0, 100]|R| and pri,j,k ∈ [0, 1]|R| are the uncertainty score map and probability
map, respectively. Here, r ∈ R, where R is the set of tumor entities, i.e. WT, TC, and ET.

4.3.9 Method-9: Team LMB (Ballestar and Vilaplana, 2021)

The method used a V-net (Milletari et al., 2016) architecture. A combination of test-time-
dropout and test-time-augmentation was used for uncertainty estimation. In particular, the
same input was passed through the network 20 times with random dropout and random
data augmentation. The uncertainty map was estimated with the variance for each sub-
region independently. Let Y i = yi1, y

i
2, ..., y

i
B be the vector that represents predicted labels

for the ith voxel. The voxel-wise uncertainty map, for each tumor entity (WT,TC,ET), was
obtained as the variance:

var =
1

B

B
∑

b=1

(yib − yimean)
2,

where yimean represents the mean prediction across b samples.

4.3.10 Method-10: Team Matukituki (McHugh et al., 2021)

A multisequence 2D Dense-UNet segmentation model was trained. The final layer of this
model is a four-channel soft-max layer representing the labels ’no tumor’, ’edema’, ’necrosis’,
and ’ET’. Uncertainty values were obtained from the final layer of the segmentation model
for each label as follows: For WT, initial uncertainty values were obtained by adding the
voxel-wise soft-max values of ’edema + necrosis + ET’. The initial uncertainty values for TC
were the voxel-wise sum of ’necrosis + ET’. The initial uncertainty of the ET was the values
of the voxel-wise soft-max channel representing ET. For all labels, the initial uncertainty
values were clipped between 0 and 1. They were then modified according to the function:
uncertainty = (1 – initial uncertainty) x 100. Finally, uncertainty values of 99 were changed
to 100.

4.3.11 Method-11: Team QTIM (Patel et al., 2021)

The method used an ensemble of five networks to estimate voxel-wise segmentation uncer-
tainty. Mirror axis-flipped inputs were passed through all models in the ensemble, resulting
in 40 predictions per entity. These predictions were combined by directly averaging the
model logits, denoted as lx. A voxel with high predictive uncertainty will have |lx| ≈ 0,
whereas a voxel with high predictive certainty will have |lx| � 5. To explicitly quantify un-
certainty (U) in the range 0 (maximally certain) to 100 (maximally uncertain), the following
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formula is used:

Ux =

{

200 · σ(lx) if 0 ≤ σ(lx) < 0.5

200 · (1− σ(lx)) otherwise

where the σ function converts the ensembled logits to probabilities.

4.3.12 Method-12: Team Nico@LRDE

A cascade of two 3D U-Net type networks was employed for the task of brain tumor segmen-
tation and its associated uncertainty estimation. The first network was trained for the brain
tumor segmentation task. The second network was trained to predict where the segmenta-
tion network made wrong predictions. Here, the ground truth for training this network was
generated as follows: the ground truth was considered ones (present) at voxels where the
segmentation network was wrong, and it was considered as zeros (absent) at voxels where
the segmentation network was correct. This way, the uncertainty networks learn to return
zeros where the segmentation network is generally accurate and values next to one where
the segmentation networks will have issues correctly predicting the segmentation ground
truth. The output of the uncertainty estimation network (second network) was normalized
between 0-100.

5. Analysis

This section presents the complete analyses and evaluation of teams that participated in
the QU-BraTS 2020 challenge. Section 5.1 provides the description of the evaluation and
ranking strategy followed during the QU-BraTS 2020 challenge. Section 5.2.1 provides the
overall ranking results (accounting for all tumor entities) according to which the winning
teams were announced at the challenge (Figure 3). We also compare their ranking on the
segmentation task in the same section. Then, Section 5.2.2 provides the ranked order of the
participating teams according to the individual tumor entities (Figure 4-6), followed by our
ablation study (in Section 5.2.3) on the scores incorporated in the general score (Equation
1) (Figure 7-9). Table 2 encapsulates a summary of the ranked order of the participating
teams for all this analysis. Finally, Section 5.3 provides qualitative results highlighting the
effect of uncertainty thresholding filtering for all participating teams. .

5.1 Ranking Scheme: BraTS 2020 challenge on uncertainty quantification
(QU-BraTS)

The ranking scheme used during the challenge comprised the ranking of each team rela-
tive to its competitors for each testing subject, for each evaluated tumor entity (i.e., ET,
TC, WT) using the overall score (Equation 1). This ranking scheme led to each team
being ranked for 166 subjects for three regions, resulting in 498 individual rankings. For
each team, first, the individual ranking for each patient was calculated by adding ranks
across each region. This ranking is referred to as the Cumulative Ranking Score (CRS).
For each team, the Normalized Ranking Score (NRS) was also calculated for each patient
by dividing their CRS by the total number of participating teams and the total number of
regions. The NRS is in the range of 0-1 for each patient. The final ranking score (FRS)
was calculated by averaging the cumulative rank across all patients for each participating
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Table 2: Summary of team ranking for different analyses performed in this paper. We use
the ranking scheme described in Section:5.1 to rank different teams. “QU-BraTS
Ranking” column depicts the actual team ranking for all participating teams in
QU-BraTS 2020 challenge (Section 5.2.1). In the ”Segmentation Ranking” column,
we also report segmentation ranking for all teams that participated in the QU-
BraTS challenge. The segmentation ranking is across 78 teams that participated in
the segmentation task during BraTS 2020. In three columns under ”Ranking based
on Individual Tumor Entities” (Section 5.2.2), we provide a team ranking based
only on one of the three tumor entities. Similarly, we also report the team ranking
based on the ablation study of our developed score in the last three columns of
”Ranking Based on Ablation Study” (Section 5.2.3). For each type of ranking, the
total number of provided ranks (given in the bracket) varies, as we provide the
same rank for teams that do not have a significant statistical difference between
their performance (Section 5.1).

Teams
Challenge Ranking

(Section 5.2.1)
Variations

Ranking Based on
Individual Tumor Entities

(Section 5.2.2)

Ranking Based on
Ablation Study
(Section 5.2.3)

QU-BraTS
Ranking (9)

Segmentation
Ranking (18)

Whole
Tumor (13)

Tumor
Core (11)

Enhancing
Tumor (11)

DSC AUC (10)
DSC AUC and
FTP AUC (9)

DSC AUC and
FTN AUC (12)

SCAN 1 4 1 1 1 6 2 4

UmU 2 7 3 2 2 4 3 3

DSI Med 2 13 2 2 3 9 3 7

QTIM 3 7 4 2 3 3 4 2

Uniandes 4 15 5 3 4 8 5 6

nsu btr 5 13 10 8 10 1 4 9

LMB 5 20 8 4 3 10 7 8

radiomics miu 6 13 7 5 5 2 8 3

Nico@LRDE 6 18 6 6 6 7 9 5

Jaguars 6 13 5 6 6 2 8 3

Team Alpaca 7 10 9 7 7 2 1 1

Matukituki 8 19 11 9 9 7 4 12

Frankenstein 9 18 13 11 8 6 6 11

med vision 9 14 12 10 11 5 7 10

team. Other challenges, such as the Ischemic Stroke Lesion Segmentation Challenge (ISLES
- http://www.isles-challenge.org/) (Maier et al., 2017), use a similar ranking scheme.

Following the BraTS challenge, further permutation testing was done to determine the
statistical significance of the relative rankings between each pair of teams. This permutation
testing would reflect differences in performance that exceeded those that might be expected
by chance. Specifically, for each team, given a list of observed patient-level Cumulative
Ranks, i.e., the actual ranking described above, for each pair of teams, repeated random
permutations (i.e., 100,000 times) of the Cumulative Ranks for each subject were performed.
The difference in the FRS between this pair of teams was calculated for each permutation.
The proportion of times the difference in FRS calculated using randomly permuted data
exceeded the observed difference in FRS (i.e., using the actual data) indicated the statistical
significance of their relative rankings as a p-value. Teams that do not have a statistically
significant difference in their FRS have similar respective ranks (group) on the leaderboard4.

4. Throughout the paper, we report any p-value less than 0.05 as the threshold for statistically significant
differences.
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Figure 3: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set (lower is better). Boxplots for the top
four performing teams are visualized using Pink (Team SCAN ), orange (Team
DSI Med), Cyan (Team UmU ), and Maroon (Team QTIM ) colour. Box plots
for the remaining teams use gray colour. Y-axis shows the name of each team
and their respective uncertainty task ranking, followed by their segmentation
task ranking. There was no statistically significant difference between per patient
ranking of teams ranked at the same position. Teams which has different ranks
had statistically significant differences in their per-patient ranking.

5.2 Team Ranking

This section reports the final rankings of all participating teams on BraTS 2020 test dataset.

5.2.1 Overall Ranking Results

Figure 3 (and QU-BraTS ranking column in Table 2) provides a relative ranking for each
team5. We can see that Team SCAN comfortably outperforms all other methods and
achieves the first rank in the challenge. Their Normalized Ranking Score (NRS) across
all patients was ∼ 0.14, while the NRS (across all patients) for the teams which achieved
rank 2 (Team UmU and Team DSI Med) was ∼ 0.28. There was no statistically significant
difference between Team UmU and Team DSI Med. Thus both teams were ranked at posi-

5. Box plot depicting performance of each team for four different scores - DICE AUC, FTP RATIO AUC,
FTN RATIO AUC, SCORE, for three different tumor entities - WT, TC, ET, is given in Appendix A.

16



Benchmarking in QU-BraTS

tion 2 on the challenge leaderboard. Team QTIM ranked 3rd in the challenge leaderboard
and achieved marginally (though statistically significant) lower performance compared to
Rank-2 teams (average NRS of ∼ 0.31 compared to average NRS of ∼ 0.28).

We also report the relative segmentation ranking of each team participating in the
uncertainty challenge. The reported segmentation task ranking is across 78 teams that
participated in the segmentation task. From Figure Figure 3 (and Segmentation Ranking
column in Table 2), we can observe that while the Team SCAN (pink colour) achieves
a higher ranking (Rank-4) than other teams in the segmentation task, the segmentation
task ranking and the uncertainty task (QU-BraTS challenge) ranking are not the same.
This is visible for Team UmU and Team QTIM, as both achieved a similar ranking (rank-
7) in the segmentation task of BraTS 2020; while Team UmU was ranked second in the
uncertainty task, Team QTIM was ranked third. Similarly, we can observe that three
teams that achieved Rank-13 in the segmentation task (Team DSI Med, Team nsu btr, and
radiomics-miu) were ranked differently in the uncertainty evaluation task (Rank-2, Rank-5,
and Rank-6, respectively). The difference in ranking across both tasks shows that perform-
ing well on the segmentation task does not guarantee good performance on the uncertainty
evaluation task, and both tasks are complementary.

5.2.2 Team Ranking for individual tumor entities

The BraTS challenge involves three separate tumor entities (WT, TC, and ET). The segmen-
tation performance across these entities varies, as reported in the previous BraTS challenge
reports (Menze et al., 2015; Bakas et al., 2018). Specifically, the BraTS challenge reports
good DSC across different teams for the WT segmentation task, while the performance
for the ET segmentation task is relatively lower. The performance gap between different
tumor entities can hinder the clinical adaptation of the segmentation algorithms. The main
goal for developing the uncertainty evaluation scores is to make algorithms more useful for
clinical adaptation. Keeping this in mind, we further report the raking of each participat-
ing team according to the score (Equation 1) calculated for each tumor entity in Figure 4,
Figure 5, and Figure 6.

When teams are ranked only based on their WT scores (Figure 4 and Whole Tumor
column in Table 2), Team SCAN still comfortably outperforms other teams similar to the
original ranking (Figure 3). Unlike the original ranking scheme, Team DSI Med ranks sta-
tistically significantly higher compared to Team UmU. Similarly, from Figure 5 (and the
Tumor Core column in Table 2), we can observe that Team QTIM, Team UmU, and Team
DSI Med perform similarly without any statistically significant difference when ranked only
based on their TC score as all teams are ranked at the same position. In Figure 6 (and
the Enhancing Tumor column in Table 2), Team UmU achieves rank-2 with statistical sig-
nificance compared to Team QTIM and Team DSI Med. We also observe no statistically
significant difference between Team QTIM, Team DSI Med, and Team LMB.
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Figure 4: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set test set only for Whole Tumor (lower
is better). Boxplots for the top four performing teams (in the final ranking -
Figure 3) are visualized using Pink (Team SCAN ), orange (Team DSI Med), Cyan
(Team UmU ), and Maroon (Team QTIM ) colour. Box plots for the remaining
teams use gray colour. Y-axis shows the name of each team and their respective
uncertainty task ranking, followed by their segmentation task ranking. There was
no statistically significant difference between per patient ranking of teams ranked
at the same position. Teams which has different ranks had statistically significant
differences in their per-patient ranking.

Overall, Team SCAN comfortably ranks first for all tumor entities. Team UmU ranks
3-2-2 for WT-TC-ET, while Team DSI Med ranks 2-2-3 for WT-TC-ET. Both teams are
ranked at position 2 when considering all tumor entities. The analysis shows that different
teams achieve different ranks depending on the tumor entities, which shows that their
performance differs across different tumor entities.

5.2.3 Ablation study on our score

The overall score for uncertainty evaluation is calculated as a combination of three different
AUCs as described in Equation 1. Section 3 described the rationale behind the development
of this score. As discussed in Section 3, evaluating the task-dependent metric (in our case,
DSC) as a function of filtered samples is critical, especially in the case of pathology seg-
mentation, where there is a high class imbalance. We expect that, by filtering voxels with
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Figure 5: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set test set only for Tumor Core (lower
is better). Boxplots for the top four performing teams (in the final ranking -
Figure 3) are visualized using Pink (Team SCAN ), orange (Team DSI Med), Cyan
(Team UmU ), and Maroon (Team QTIM ) colour. Box plots for the remaining
teams use gray colour. Y-axis shows the name of each team and their respective
uncertainty task ranking, followed by their segmentation task ranking. There was
no statistically significant difference between per patient ranking of teams ranked
at the same position. Teams which has different ranks had statistically significant
differences in their per-patient ranking.

decrease in the uncertainty threshold, the performance on the remaining voxels measured
using the task-dependent metric (DSC) should increase but not at the expense of filtering
true positive or true negative voxels. The final score consists of the task-dependent metric
and filtered true positive/negatives as a function of uncertainty thresholds. In this section,
we perform an ablation study of different components of the final score (DSC, FTP, FTN).
Our analysis reaffirms that only considering one or two components of the final score leads
to a different ranking among participating teams.

Ranking According to DSC AUC: The main component of any uncertainty evaluation
score is the task dependent metric, in our case, DSC. Many previously proposed methods
for various tasks only report the value of task dependent metrics at various uncertainty fil-
tering thresholds – For example, the AUC score for multiple sclerosis Nair et al. (2020). In
Figure 7 (and the DSC AUC column in Table 2), we rank participating teams according to
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Figure 6: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set test set only for Enhancing Tumor
(lower is better). Boxplots for the top four performing teams (in the final ranking -
Figure 3) are visualized using Pink (Team SCAN ), orange (Team DSI Med), Cyan
(Team UmU ), and Maroon (Team QTIM ) colour. Box plots for the remaining
teams use gray colour. Y-axis shows the name of each team and their respective
uncertainty task ranking, followed by their segmentation task ranking. There was
no statistically significant difference between per patient ranking of teams ranked
at the same position. Teams which has different ranks had statistically significant
differences in their per-patient ranking.

their performance based on the AUC of DSC vs. Uncertainty threshold. The figure shows
that higher ranking teams in this ranking scheme (Team nsu btr, Team Alpaca, and Team
Jaguars) are different from those (Team SCAN, Team UmU, and Team DSI Med) in the
original ranking scheme (Figure 3). A closer look at the higher ranking teams according to
AUC of DSC (Figure 7) reveals that teams like Team Alpaca (Section 4.3.2) achieve a good
score by using 100 − (100 · softmax confidence) as a proxy for uncertainty. Using softmax
confidence in the foreground class (e.g. tumour subclass) as a direct proxy to uncertainty
leads to all voxels belonging to the background class (i.e. healthy tissues) being marked as
uncertain at a low uncertainty threshold. This would increase the burden in a system where
we are asking clinicians to review all uncertain voxels (Figure 14). We observed that Team
Alpaca used softmax confidence in the foreground class as a direct proxy to uncertainty.
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Figure 7: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set test set based only on DICE AUC score
(lower is better). Boxplots for the top four performing teams (in the final ranking -
Figure 3) are visualized using Pink (Team SCAN ), orange (Team DSI Med), Cyan
(Team UmU ), and Maroon (Team QTIM ) colour. Box plots for the remaining
teams use gray colour. Y-axis shows the name of each team and their respective
uncertainty task ranking, followed by their segmentation task ranking. There was
no statistically significant difference between per patient ranking of teams ranked
at the same position. Teams which has different ranks had statistically significant
differences in their per-patient ranking.

Ranking according to a combination of DSC AUC and FTP or FTN AUC: In the
last section, we ranked teams according to their performance on the task-dependent evalua-
tion metrics (DSC) at different uncertainty thresholds. As mentioned in Section 3, ranking
teams only based on their task-dependent evaluation metric rewards methods which filter
out many positive predictions at low uncertainty thresholds to attain higher performance
on the metric of interest. This would increase the burden in scenarios where clinical review
is needed for all uncertain predictions. To alleviate the issue, teams are ranked accord-
ing to a combination of (i) AUC score for DSC and (ii) AUC for FTP or AUC for FTN.
From Figure 8 (and DSC AUC and FTP AUC column in Table 2), we can conclude that a
combination of both DICE AUC and FTP AUC alone is insufficient. It still leads to Team
Alpaca ranked higher. As shown in Figure 14, Team Alpaca marks all healthy-tissues (True
Negative) voxels as uncertain, which reflects that the segmentation method is not confident
in its prediction of healthy tissue. This is problematic as it would increase the burden in
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Figure 8: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set test set based on a combination of
DICE AUC score and FTP AUC score (lower is better). Boxplots for the top
four performing teams (in the final ranking - Figure 3) are visualized using Pink
(Team SCAN ), orange (Team DSI Med), Cyan (Team UmU ), and Maroon (Team
QTIM ) colour. Box plots for the remaining teams use gray colour. Y-axis shows
the name of each team and their respective uncertainty task ranking, followed by
their segmentation task ranking. There was no statistically significant difference
between per patient ranking of teams ranked at the same position. Teams which
has different ranks had statistically significant differences in their per-patient
ranking.

scenarios where we expect clinicians to review all uncertain predictions. We see a similar
problem when teams are ranked only using a combination of DICE AUC and FTN AUC
(Figure 9 and DSC AUC and FTN AUC column in Table 2).

Analysis in the previous two sections highlights the necessity of combining all three AUCs
to calculate the final score for ranking teams in the context of uncertainty quantification of
the brain tumor segmentation task.

5.3 Qualitative Analysis

Figure 10 - Figure 14 plots the effect of uncertainty threshold based filtering on example
slices from a few BraTS 2020 test cases for all participating teams. Green voxels represent
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Figure 9: QU-BraTS 2020 boxplots of Normalized Ranking Score (NRS) across patients for
all participants on the BraTS 2020 test set test set based on a combination of
DICE AUC score and FTN AUC score (lower is better). Boxplots for the top
four performing teams (in the final ranking - Figure 3) are visualized using Pink
(Team SCAN ), orange (Team DSI Med), Cyan (Team UmU ), and Maroon (Team
QTIM ) colour. Box plots for the remaining teams use gray colour. Y-axis shows
the name of each team and their respective uncertainty task ranking, followed by
their segmentation task ranking. There was no statistically significant difference
between per patient ranking of teams ranked at the same position. Teams which
has different ranks had statistically significant differences in their per-patient
ranking.

True Positive predictions, while blue and red voxels represent False Positive and False Neg-
ative predictions. We filter out voxels at different thresholds (100, 75, 50, and 25). Filtered
voxels are marked as yellow. According to the developed uncertainty evaluation score (Sec-
tion 3), we want methods that filter out (marked as yellow) false positive and false negative
voxels while retaining true positive and true negative voxels as we decrease the uncertainty
threshold.

In Figure 10, we visualize the effect of uncertainty based thresholding for WT segmen-
tation on a single slice of a BraTS 2020 test case. A closer look at some of the better
performing teams like Team SCAN, Team UmU, and Team DSI Med reveals that these
teams filter out more False Positives and False Negatives at a higher threshold than other
teams like Team QTIM and Team Uniandes. We can also observe that lower-performing
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teams like Team Alpaca, Team Matukituki, Team Frankenstein, and Team med vision mark
all background voxels as uncertain at a low threshold. As mentioned before, marking back-
ground voxels as uncertain is problematic as it shows that the method is not confident in
its healthy-tissue segmentation and requires clinicians to review the segmentation.

In Figure 11, we plot the effect of uncertainty based thresholding for WT segmentation
on another slice of the same BraTS 2020 test case. Here we observe a similar trend where
higher ranked teams can filter out False Positives and False Negatives at a higher threshold
than other teams. Team SCAN only filters negative predictions. This results in them never
filtering out their False Positive predictions of the whole tumor inside the ventricles. It
is problematic in a real-world scenario as we do not want a method that is over-confident
about its positive pathology segmentation predictions.

Figure 12 shows an example slice of a different BraTS 2020 patient and visualize the
effect of uncertainty thresholding for core tumor segmentation. The figure highlights that
team ranking is different across different cases as we can see that Team SCAN and Team
UmU has similar prediction at Threshold:100. However, Team SCAN starts filtering out
more true negatives sooner compared to Team UmU, which would result in Team SCAN
ranked lower compared to Team UmU for this particular BraTS test case. We can observe
a similar trend when comparing Team DSI Med and Team LMB, where Team LMB starts
filtering out more false positives sooner than Team DSI Med. Similarly, in Figure 13, we
can observe that in scenarios where all teams are making errors by predicting a high amount
of false positives, the overall uncertainty score would be more reliant on which teams can
filter out these false positives sooner. For example, Team UmU performs better compared
to Team DSI Med.

Figure 14 depicts an example slice of uncertainty threshold based filtering for ET segmen-
tation. Here we can see that when all teams make almost the same predictions with a high
amount of true positives compared to false positives/false negatives, the overall uncertainty
score is similar across teams. Except for teams that mark all background (healthy-tissue)
voxels as uncertain, they perform poorly on the final score.

6. Discussion

This paper introduced a new score for evaluating uncertainties in the task of brain tu-
mor segmentation during the BraTS 2020 challenge. The proposed score was used to rank
different participating teams from the Uncertainty Quantification task of the BraTS 2020
challenge (QU-BraTS 2020).

The proposed evaluation score was developed with the clinical objective of enabling the
clinician to review only the uncertain areas of an automatic segmentation algorithm instead
of the complete segmentation. Toward this end, this score would reward algorithms that
are confident when correct and uncertain when incorrect. The objective was evaluated by
filtering (marking as uncertain) voxels with uncertainty higher than a specified threshold as
uncertain. The task-dependent DSC is measured only on the remaining unfiltered voxels.
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To ensure that method does not filter out a high number of correctly predicted voxels in
order to achieve a better DSC, the developed evaluation score also keeps track of the num-
ber of filtered True Positive and True Negative voxels. Keeping track of these filtered TP
and TN voxels ensures that the burden on the reviewing clinicians is not increased substan-
tially. In short, the proposed score calculates the task-dependent metric score (i.e. DSC for
segmentation), the percentage of filtered true positives and true negatives at different uncer-
tainty thresholds. It combines them to generate a single evaluation score for a single subject.

The analysis (Section 5.2) of algorithms developed by the participating teams from the
QU-BraTS 2020 task highlighted that the relative ranking of the participating teams for
both the segmentation and uncertainty quantification tasks are different. The different rank-
ing orders show that performing better on the segmentation task does not guarantee good
performance on the uncertainty quantification task. An automatic segmentation method
that provides both the segmentation and its uncertainties is more clinically relevant. Both
the segmentation and the associated uncertainties provide complementary information. For
example, automatic segmentation can provide accurate results with minimal clinician in-
put. In contrast, the associated uncertainty would allow clinicians to see where to trust and
review the segmentation before deploying it in clinical practice.

Results in Section 5.2.2 indicate that it is necessary to rank teams individually for each
tumor entity as they rank differently across these entities. An ablation study on the pro-
posed score (Section 5.2.3) showed the necessity of utilizing all three components (DSC,
percentage of Filtered True Positive, and percentage of Filtered True Negative) for the pro-
posed uncertainty evaluation score.

One of the significant limitations of the current analysis is the dependency between
the segmentation results and the uncertainty generation methods, which does not allow for
more in-depth analysis. It would be interesting to analyze and compare different uncertainty
generation methods (e.g., Team SCAN, Team UmU, Team Alpaca) when the segmentation
method is the same across them.

We also observe a limitation of the proposed evaluation score. Team SCAN performs
better on the overall score by not marking any positive prediction as uncertain. In a real-
world scenario, a method that is always confident about its positive predictions leads to
confident over-segmentation. This shows that the developed uncertainty evaluation score is
not perfect, and we need to keep improving it. We observed a similar trend in a recently con-
ducted Probabilistic Object Detection challenge (Skinner et al., 2019), where the winning
team attained the best score despite not using a probabilistic method. These two examples
show the need to keep improving the developed task-depended uncertainty evaluation score
for different tasks.

The DSC is a good segmentation metric when the interest structure contains a high
number of voxels. However, it is not a stable metric when calculated on a low number
of voxels (Reinke et al., 2021). In the developed evaluation score, instability of the DSC

leads to low performance at a lower threshold (more filtered voxels), as DSC calculation
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considers only a few remaining unfiltered voxels (Figure 2). The poor stability of DSC is
a well-known challenge in the literature (Reinke et al., 2021). Future work could explore
a task-dependent metric that is more stable across different uncertainty thresholds (i.e.,
different volumes for the structure of interest). For example, we can calculate Precision
( TP

TP+FP
) and Recall ( TP

TP+FN
) at different uncertainty thresholds and calculate the AUC of

these curves (Precision vs Uncertainty threshold, and Recall vs Uncertainty threshold). A
high-performing team should get a high AUC for both Precision and Recall (same as AUC
for DSC). To achieve a high AUC for Precision, participating teams have to reduce FP
(mark them as uncertain). Similarly, to attain a high AUC for Recall, participating teams
have to reduce FN (mark them as uncertain). In this way, we can penalize teams that are
highly confident in their positive predictions as well as those that are highly confident in
their false negative predictions.

The proposed evaluation framework evaluates uncertainties for each tumor entity as a
single class segmentation/uncertainty problem, while the overall tumor segmentation is a
multi-class problem. Future extensions could involve developing methods to evaluate uncer-
tainties in multi-class segmentation. Multi-class segmentation uncertainties and single-class
segmentation uncertainties are different and can lead to different outcomes (Camarasa et al.,
2021). In addition, the current evaluation framework focuses on filtering individual voxels,
as most of the developed uncertainty frameworks generate per-voxel uncertainties that are
not spatially correlated (Gal and Ghahramani, 2016; Lakshminarayanan et al., 2017). The
recent development of spatially correlated uncertainty generation methods (Monteiro et al.,
2020) indicates the necessity of developing uncertainty evaluation scores that consider the
spatial correlation between pixels/voxels.

Another future direction is obtaining ”ground-truth” uncertainty maps and evaluating
automatic uncertainty generation methods against these maps. One recent promising direc-
tion uses inter-observer and intra-rater variation to proxy for ”ground-truth” uncertainty
(Kohl et al., 2018; Baumgartner et al., 2019; Menze et al., 2020; del Toro et al., 2014).
One limitation of this approach is that it assumes that ”ground-truth” uncertainties can
be estimated through multiple labels provided by different raters for the same (often small)
set of images. In recent papers (Zech et al., 2018; Sheller et al., 2020), it was noted that
institutional biases (McCarthy et al., 2016) play an essential factor in deep learning medical
imaging model performance. However, variability in labeling across raters reflecting insti-
tutional biases are not direct proxies for ”ground-truth” uncertainties. To expand on this
point, inter-rater and intra-rater variability relies on the assumption of attaining a unique
label. However, there are many situations where a unique label cannot necessarily be at-
tained in some regions of an image. For example, at boundaries between tumor and healthy
tissue in MRI due partly to partial volume effects but also because the labels cannot be
seen in the MRI (and cannot be verified without a biopsy in the case of a tumour). For
the latter case, each annotator is ”guessing” the location of the boundary when none are
confident in their annotations. The result might be measuring contextual rater biases (e.g.,
based on their radiology backgrounds) but not reflecting the true uncertainties in the labels
themselves (e.g., whether a particular pixel is an enhancing tumour). One alternative ap-
proach could be asking annotators to mark areas they are not certain about, such as tumor
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boundaries in an MRI scan. These ”uncertain” areas can then serve as ”ground-truth,”
and uncertainty estimates generated by algorithms can be compared to it. That being said,
acquiring a ”ground-truth” uncertainty is still an open area of research.

The approach developed for QU-BraTS has shown promising results in different ap-
plications. For example, the proposed score was used to evaluate uncertainties for brain
tumor segmentation when a crucial MR sequence is missing (Vadacchino et al., 2021). The
proposed score has also been used to evaluate multi-class segmentation of the carotid artery
lumen and the vessel wall (Camarasa et al., 2021).
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Appendix A - Box plots for individual scores

This appendix provides box plots for four different scores (DICE AUC, FTP RATIO AUC,
FTN RATIO AUC, and Score - Equation 1) for three different tumor entities (WT, TC,
and ET) for each team. The teams are ranked from better to worse performance according
to mean values across all patients for each score. Higher is better for DICE AUC (Figure 15
- Figure 17) and Score (Figure 24 - Figure 26), while lower is better for FTP RATIO AUC
(Figure 18 - Figure 20) and FTN RATIO AUC (Figure 21 - Figure 23).

Note that these box plots are different from ranking plots, as the ranking plots de-
scribe the overall performance across different tumor entities and different subjects as de-
scribed in Section 5.1. From these plots, we can see that while for all three tumor entity
DICE AUC plots, Team nsu btr performs better than other teams, their overall Score is
comparatively lower than other teams as they do not perform well for FTP RATIO AUC
and FTN RATIO AUC.

Similarly, we also observe that Team SCAN does not outperform other teams for
DICE AUC but comfortably outperforms other teams in FTP RATIO AUC. They per-
form relatively similar to other top-ranked teams in the FTN RATIO AUC score. Overall,
they achieve the best performance for the Score across all three tumor entities. The main
reason for them outperforming other teams for FTP RATIO AUC is how they developed
their uncertainty generation method. They found that they achieved the best results on
the given Score (Equation 1) by considering all positive predictions as certain (Section 4.3.1).

In terms of overall Scores, we observe that Team SCAN comfortably outperforms all
other teams for each tumor entity. Team QTIM and Team Uniandes report better mean
scores across different patients compared to Team SCAN. Despite this, they do not achieve
an overall better ranking for each patient, which shows the usefulness of reporting ranking
and statistical-significance analysis across different patients rather than just reporting mean
overall Score across patients.

Appendix B - QU-BraTS 2019

In this appendix, we analyze and briefly describe methods employed by participating teams
in BraTS 2019 sub-challenge on uncertainty quantification. A total of 15 teams participated
in the challenge. From these 15 teams, five teams further participated during the following
QU-BraTS 2020 challenge.

BraTS 2019 dataset: As described in Section 3.1, BraTS 2019 dataset contains 335 pa-
tient MRIs in the training set, 125 in the validation set, and 166 in the testing set. All
teams developed their method using the training set and the validation set. Ground truth
segmentation for the validation set was not publicly available for the teams. The final per-
formance of all teams was measured on the testing set, where each team had access to a
48-hour window to upload their result to the server (https://ipp.cbica.upenn.edu/).
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QU-BraTS 2019 results on the test set: We ran the task of uncertainty quantification
preliminary during the challenge and did not employ any ranking scheme. Also, the score
used during the challenge was different from the one described in Section 3. Precisely, we did
not calculate the AUC of Ratio of Filtered True Negatives vs. Uncertainty threshold until
the validation phase was ended; and only used AUCs ofDSC vs. Uncertainty Threshold and
Ratio of Filtered True Positives vs. Uncertainty Threshold. After the validation phase, using
qualitative inspection, we found that many teams were employing 1 - softmax confidence as
an uncertainty measure, which is not helpful from a real clinical point of view as described
in Section 3 and Section 5.3. Keeping this in mind, we added the AUC of Ratio of Filtered
True Negatives vs. Uncertainty threshold during the final testing phase. Table 3 lists all
team names and their performance on the BraTS 2019 test phase. The table shows that
teams that employed 1 - softmax confidence as uncertainty measure performed poorly on
FTN RATIO AUC score (Ex. Team Alpaca, Team DRAG, Team ODU vision lab, etc.).
We want to point out that we did not employ the ranking strategy used in the QU-BraTS
2020 challenge during the QU-BraTS 2019 challenge. As we discussed in Appendix A, the
ranking strategy and statistical significance analysis reflect the true potential of the method
compared to just ranking teams according to their mean performance across testing cases.
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Figure 10: Effect of uncertainty thresholding on a BraTS 2020 test case for whole tumor seg-
mentation across different participating teams. (a) T2-FLAIR MRI (b) Ground
Truth (c) Prediction (d) No filtering. Uncertainty Threshold = 100 (e) Uncer-
tainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold
= 25.
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Figure 11: Effect of uncertainty thresholding on a BraTS 2020 test case for whole tumor seg-
mentation across different participating teams. (a) T2-FLAIR MRI (b) Ground
Truth (c) Prediction (d) No filtering. Uncertainty Threshold = 100 (e) Uncer-
tainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold
= 25.
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Figure 12: Effect of uncertainty thresholding on a BraTS 2020 test case for core tumor seg-
mentation across different participating teams. (a) T1ce MRI (b) Ground Truth
(c) Prediction (d) No filtering. Uncertainty Threshold = 100 (e) Uncertainty
Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold =
25.
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Figure 13: Effect of uncertainty thresholding on a BraTS 2020 test case for core tumor seg-
mentation across different participating teams. (a) T1ce MRI (b) Ground Truth
(c) Prediction (d) No filtering. Uncertainty Threshold = 100 (e) Uncertainty
Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold =
25.
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Figure 14: Effect of uncertainty thresholding on a BraTS 2020 test case for enhance tumor
segmentation across different participating teams. (a) T1ce MRI (b) Ground
Truth (c) Prediction (d) No filtering. Uncertainty Threshold = 100 (e) Uncer-
tainty Threshold = 75 (f) Uncertainty Threshold = 50 (g) Uncertainty Threshold
= 25.
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Figure 15: QU-BraTS 2020 boxplots depicting DICE AUC distribution for all teams across
different participants for Whole Tumor on the BraTS 2020 test set (higher is
better).

ns
u_
bt
r

m
ed

_v
isi
on

Te
am

Al
pa

ca

Um
U

QT
IM

ra
di
om

ics
-m

iu

SC
AN

Ja
gu

ar
s

Un
ia
nd

es

M
at
uk

itu
ki

Ni
co
@
LR

DE LM
B

DS
I_M

ed

Fr
an

ke
ns
te
in

Teams

0.0

0.2

0.4

0.6

0.8

1.0

DI
CE

_A
UC

DICE_AUC_TC

Figure 16: QU-BraTS 2020 boxplots depicting DICE AUC distribution for all teams across
different participants for Tumor Core on the BraTS 2020 test set (higher is
better).
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Figure 17: QU-BraTS 2020 boxplots depicting DICE AUC distribution for all teams across
different participants for Enhancing Tumor on the BraTS 2020 test set (higher
is better).
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Figure 18: QU-BraTS 2020 boxplots depicting FTP RATIO AUC distribution for all teams
across different participants for Whole Tumor on the BraTS 2020 test set (lower
is better).
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Figure 19: QU-BraTS 2020 boxplots depicting FTP RATIO AUC distribution for all teams
across different participants for Tumor Core on the BraTS 2020 test set (lower
is better).
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Figure 20: QU-BraTS 2020 boxplots depicting FTP RATIO AUC distribution for all teams
across different participants for Enhancing Tumor on the BraTS 2020 test set
(lower is better).
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Figure 21: QU-BraTS 2020 boxplots depicting FTN RATIO AUC distribution for all teams
across different participants for Whole Tumor on the BraTS 2020 test set (lower
is better).
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Figure 22: QU-BraTS 2020 boxplots depicting FTN RATIO AUC distribution for all teams
across different participants for Tumor Core on the BraTS 2020 test set (lower
is better).
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Figure 23: QU-BraTS 2020 boxplots depicting FTN RATIO AUC distribution for all teams
across different participants for Enhancing Tumor on the BraTS 2020 test set
(lower is better).
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Figure 24: QU-BraTS 2020 boxplots depicting Score distribution for all teams across differ-
ent participants for Whole Tumor on the BraTS 2020 test set (higher is better).
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Figure 25: QU-BraTS 2020 boxplots depicting Score distribution for all teams across differ-
ent participants for Tumor Core on the BraTS 2020 test set (higher is better).
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Figure 26: QU-BraTS 2020 boxplots depicting Score distribution for all teams across dif-
ferent participants for Enhancing Tumor on the BraTS 2020 test set (higher is
better).
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Figure 27: QU-BraTS 2020 boxplots depicting overall Score distribution for all teams across
different participants on the BraTS 2020 test set (higher is better).
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Table 3: Final performance on the BraTS 2019 testing dataset for teams participating in the preliminary challenge on quantifica-
tion of uncertainty in brain tumor segmentation task. Here, mean values for each score across all patient in the testing
dataset is listed.

Team #cases
DICE AUC FTP RATIO AUC FTN RATIO AUC Score overall

ScoreWT TC ET WT TC ET WT TC ET WT TC ET

SCAN (McKinley et al., 2019) 166 0.8837 0.8253 0.8209 0.0358 0.0771 0.14958 0.01919 0.0076 0.0060 0.9429 0.9135 0.8885 0.9150
RADIOMICS-MIU (Banerjee et al., 2019a) 166 0.8595 0.8122 0.7759 0.0421 0.0906 0.12009 0.00380 0.0012 0.0008 0.9379 0.9068 0.8850 0.9099
UmU (Vu et al., 2019) 166 0.8520 0.8077 0.7892 0.0602 0.1229 0.14089 0.00334 0.0150 0.0010 0.9295 0.8899 0.8824 0.9006
xuefeng (Feng et al., 2019) 166 0.8746 0.8432 0.8120 0.0894 0.1642 0.27216 0.00969 0.0049 0.0024 0.9252 0.8914 0.8458 0.8874
UTintelligence (Amian and Soltaninejad, 2019) 162 0.7800 0.6787 0.6688 0.0117 0.0528 0.12901 0.00000 0.0000 0.0000 0.9228 0.8753 0.8466 0.8816
NVDLMED (Myronenko and Hatamizadeh, 2019) 166 0.8651 0.8203 0.8251 0.0213 0.0679 0.10958 0.49326 0.3883 0.2701 0.7835 0.7881 0.8151 0.7956
FightGliomas 166 0.8275 0.7783 0.4583 0.3172 0.2312 0.51028 0.00239 0.0008 0.0007 0.8360 0.8488 0.6491 0.7779
NIC-VICOROB 166 0.3077 0.6883 0.6393 0.5380 0.0458 0.08012 0.00000 0.0000 0.0000 0.5899 0.8808 0.8531 0.7746
LRDE 2 (Boutry et al., 2019) 166 0.8851 0.8387 0.7725 0.5930 0.7017 0.26159 0.05312 0.0439 0.0196 0.7463 0.6977 0.8304 0.7581
LRDE VGG (Boutry et al., 2019) 166 0.8810 0.7883 0.6303 0.4930 0.7313 0.83645 0.04460 0.0280 0.0185 0.7812 0.6764 0.5918 0.6831
ANSIR 166 0.8727 0.8551 0.8349 0.0124 0.0765 0.11249 0.92500 0.9250 0.9250 0.6451 0.6179 0.5992 0.6207
med vision (Pei et al., 2019) 166 0.8794 0.8512 0.8491 0.0203 0.0768 0.13209 0.92435 0.9253 0.9257 0.6449 0.6164 0.5971 0.6195
TEAM ALPACA (Murugesan et al., 2019) 166 0.8768 0.8377 0.8116 0.0191 0.0707 0.10695 0.91639 0.9170 0.9228 0.6471 0.6167 0.5940 0.6192
ODU vision lab 166 0.8789 0.8517 0.8481 0.0212 0.0776 0.13283 0.92444 0.9253 0.9257 0.6444 0.6162 0.5965 0.6191
DRAG (Baid et al., 2019) 161 0.8890 0.8518 0.8105 0.0726 0.1312 0.13792 0.92280 0.9241 0.9243 0.6312 0.5989 0.5828 0.6043
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